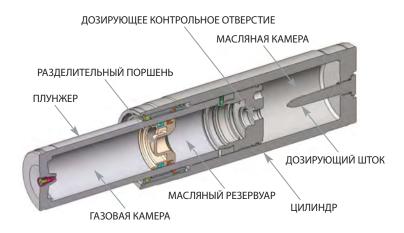


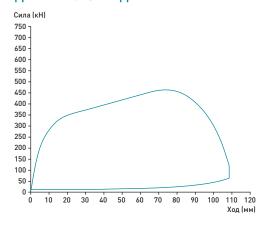
МИРОВОЙ ЛИДЕР В ОБЛАСТИ ТЕХНОЛОГИЙ ПОГЛОЩЕНИЯ ЭНЕРГИИ

РЕШЕНИЯ ДЛЯ ПРОМЫШЛЕННОСТИ

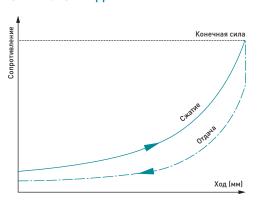
ГАЗОГИДРАВЛИЧЕСКИЕ ПРОДУКТЫ



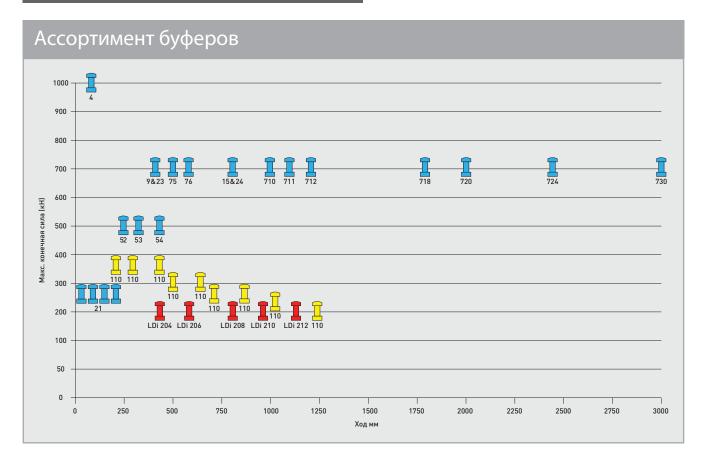
ПРИНЦИП РАБОТЫ ГИДРАВЛИКИ


На иллюстрации показана надежная конструкция гидравлического блока Oleo. Под воздействием силы удара плунжер вдавливается в цилиндр, вытесняя масло через контрольное отверстие, сдвигая разделительный поршень и сжимая газ. Сжатый газ воздействует на масло посредством разделительного поршня, благодаря чему силы отдачи позволяют вернуть блок в исходное положение после удара. Количество поглощаемой и рассеиваемой энергии зависит от скорости вдавливания.

Если вдавливание цилиндра в плунжер происходит быстро, вытесняемое им масло должно пройти через контрольное отверстие с очень большой скоростью. Это способствует повышению давления в масляной камере до уровня, оптимального для силы сжатия блока.


Такой процесс оптимизации гарантирует равномерное поглощение энергии удара на протяжении всей траектории движения плунжера, поддерживая таким образом постоянный уровень силы удара. Данная очень полезная функция возможна благодаря новаторским дозирующим решениям Oleo, обеспечивающим постепенное изменение площади сечения потока по мере сжатия блока. Расчет таких дозирующих конструкций выполняется с высокой степенью точности, что позволяет обеспечивать наилучшую защиту при указанных скоростях соударения.

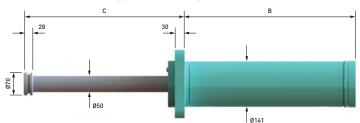
Таким образом уникальной особенностью гидравлического блока Oleo является способность изменять характеристики в зависимости от эксплуатационных потребностей. Большая часть энергии удара поглощается внутри блока, и изначально низкая сила отдачи гасится обратным потоком масла, в результате чего только малая часть энергии и силы отдачи сообщается обратно соударяющемуся транспортному средству.


ДИНАМИЧЕСКАЯ ДИАГРАММА

СТАТИЧЕСКАЯ ДИАГРАММА

ВЫБОР БУФЕРА

- Пинейка буферов LDI предназначена для использования с небольшими нагрузками в таких областях применения, как тележки легких кранов и штабелеукладчиков, автоматизированное складское оборудование и прочие погрузочные системы.
- Буферы Oleo для тяжелых условий эксплуатации имеют характеристики силы и хода, удовлетворяющие требованиям тяжелого машинного оборудования, эксплуатируемого на сталелитейных заводах, портовых кранах и в решениях для тупиковых упоров, позволяя безопасно осуществлять работу оборудования для перемещения тяжелых грузов, защищая его от ударных воздействий.
- Пинейка 110 представляет собой модульные конструкции, обеспечивающие экономичную защиту от ударных воздействий для широкой сферы применения.

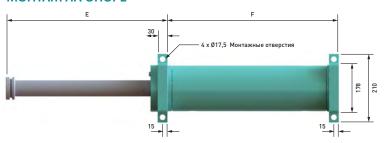


ЛИНЕЙКА LDI СЕРИЯ 200

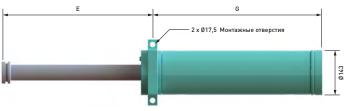
Линейка LDi — это модели легких буферов, работающих на том же гидравлическом принципе, что и линейка буферов для тяжелых условий эксплуатации, используемых для облегченного оборудования в широком ряде промышленных решений.

Линейка LDi была первоначально разработана для использования на складах, поскольку такие блоки могут сдвигаться на всю длину хода при небольших нагрузках, что позволяет буферу полностью сжиматься, когда тележка или штабелеукладчик упирается в конец прохода. Такие буферы устанавливаются на крановых тележках, небольших кранах класса корабль-берег и имеют длину 400 – 1200 мм.

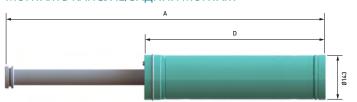
МОНТАЖ НА ПЕРЕДНЕМ ФЛАНЦЕ



Модель 204 206 208 210 212 Α 1022 1447 1872 2297 2722 977 1202 1427 В 527 752 C 495 695 895 1095 1295 D 578 803 1028 1253 1478 E 681 481 881 1081 1281 F 526 751 976 1201 1426 541 766 991 1216 1441


Все размеры приведены в мм

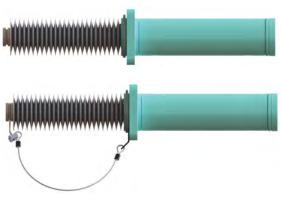
Размеры


монтаж на опоре

МОНТАЖ НА ПЕРЕДНЕЙ ОПОРЕ И ЗАДНЕМ УПОРЕ

МОНТАЖ В КАПСУЛЕ/ЗАДНИЙ МОНТАЖ

требуется ограничительный упор, так как не следует допускать, чтобы буферные нагрузки прилагались только к монтажным болтам опоры.


зазор диаметром Ø146 мм

Буферы не должны устанавливаться в устройства с боковыми нагрузками без согласования с вашим представителем Oleo. Для получения информации о буферных устройствах и системах не перечисленных выше, свяжитесь с вашим представителем Oleo.

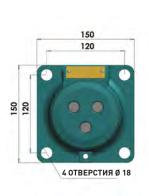
Примечание: Цилиндру буфера требуется кольцевой

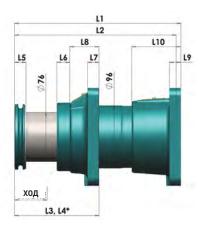
Примечание: Для блоков, монтируемых на опоре,

Рабочие характеристики							
Модель	204	206	208	210	212		
Ход (мм)	400	600	800	1000	1200		
Максимальное поглощение (кДж)	68	102	136	170	204		
Максимальная конечная сила (кН)	200	200	200	200	200		
Силы сжатия (кН)	2	2	2	2	2		

ОБЗОР ЛИНЕЙКИ СЕРИЙ ДЛЯ ТЯЖЕЛЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ

Погло- щаемая	Диапазон буфера Максимально	21	21	21	21	52	53	54	9	23	15	24	75	76	710	711	712	718	720	724	730	4
энергия/буф	допустимая конечная сила	250	250	250	250	500	500	500	700	700	700	700	700	700	700	700	700	700	700	700	700	1000
ер (кДж)	(кН)	250	250	250	250	500	500	500	700	700	700	700	700	700	700	700	700	700	700	700	700	1000
	Ход (мм)	50	100	150	200	250	300	400	400	400	800	800	500	600	1000	1100	1200	1800	2000	2400	3000	114
1		27	13																			12
2,5		67	33	22	17	13	11															29
5		133	67	44	33	27	22	17	17	17			13	11								58
10			133	89	67	53	44	33	33	33	17	17	27	22	13	12	11					117
20				178	133	107	89	67	67	67	33	33	53	44	27	24	22	15	13	11		234
30					200	160	133	100	100	100	50	50	80	67	40	36	33	22	20	17	13	351
40						213	178	133	133	133	67	67	107	89	53	48	44	30	27	22	18	468
50	Силы, генерируе-					267	222	167	167	167	83	83	133	111	67	61	56	37	33	28	22	585
60	мые на один					320	267	200	200	200	100	100	160	133	80	73	67	44	40	33	27	702
80	буфер (кН)					427	356	267	267	267	133	133	213	178	107	97	89	59	53	44	36	936
100							444	333	333	333	167	167	267	222	133	121	111	74	67	56	44	
150								500	500	500	250	250	400	333	200	182	167	111	100	83	67	
200									667	667	333	333	533	444	267	242	222	148	133	111	89	
300											500	500		667	400	364	333	222	200	167	133	
350											583	583			467	424	389	259	233	194	156	
400											667	667			533	485	444	296	267	222	178	
450															600	545	500	333	300	250	200	
	L1	260	420	582	700	872	1006.5	1277	1205	1257	2385	2487	1620	1720	3218	3318	3418	5265	5980	6952	8625	546
	L1 (с гофриро- ванным чехлом)	260	420	582	700						*2464	2566			*3297	*3397	*3497					
	L2	133	183	233	360	528	577	677	678	728	905	950	832	932	1160	1260	1360	2183	2270	2805	3358	235
	L2 (с гофриро- ванным чехлом)	153	213	273	380						*984	1029			*1239	*1339	*1439					
	L3	127	237	349	340	345	429.5	600	527	529	1480	1537	788	788	2058	2058	2058					311
Внешние	L3 (с гофриро- ванным чехлом)	107	207	309	320						1480	1537			2058	2058	2058	3082	3710	4147	5267	
размеры	D1		100	/125			140/18	0	140,	/200	20	00	140	/200		200			200	/250		140/330
	D2		9	5			123		14	10	18	30	14	14		180			2	75		146
	А		12	20				2	10		215/2	209,6	2	10	2	15/209	,6		28	30		210
	В		15	50				2	70		30	00	27	70		300			3(54		270
	D3		1	8				2	6		3	2	2	6		32			3	2		26

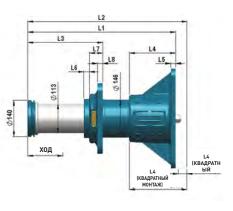

Рекомендуемое минимальное пространство для монтажа: D2 + 5 мм Дополнительное пространство для камеры: 20 мм х 45° Указанная конечная сила включает КПД $\xi=0,75$ Все размеры указаны в мм


* = Нестандартные блоки

Тип 21 включает в себя четыре различных буферных блока, длинной от 50 до 200 мм. Тип 21 представляет собой небольшие блоки с меньшим уровнем поглощения энергии, по сравнению с прочими буферами Oleo, которые обычно устанавливаются на малые краны. Эти буферы в комбинации из нескольких блоков также используются на сталелитейных заводах в качестве стопоров для слябовых заготовок.

РАЗМЕРЫ

Статические данные Тип 21, макс. сила 250 кН Тип 21/50 21/100 21/150 21/200 Ход (S) (мм) 50 100 150 200 Динамическое 30 40 10 20 энергопоглощение (кДж) Максимально допустимая 250 250 250 250 конечная сила (кН) Статическая начальная сила (кН) 3 3 3 14 Статическая конечная сила (кН) 16 15 24

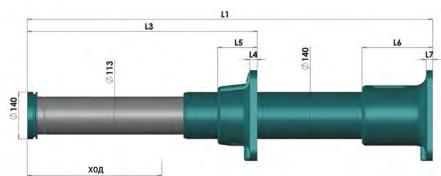

Тип	21/50	21/100	21/150	21/200
Динамическое энергопоглощение (кДж)	10	20	30	40
Максимально допустимая сила удара (кН)	250	250	250	250
Вес капсульного блока (MCS) (кг)	8	11	14	16
Вес блока с задним монтажом (MBS) (кг)	11	14	20	22
Вес блока с передним монтажом (MFS) (кг)	11	14	17	20
Ход (S) (мм)	50	100	150	200
L1 (мм)	260	420	582	700
L3 (мм)	133	183	233	360
L4 (мм) *Только с защитными гофрированными чехлами	153	213	273	380
L5 (мм)	18	18	18	64
L6 (мм)	20	20	20	20
L6 (мм) *с защитными гофрированными чехлами	40	50	60	40
L7 (MM)	17,5	17,5	17,5	17,5
L8 (MM)	45	45	45	75
L9 (мм)	17,5	17,5	17,5	17,5
L10 (мм)	75	75	118	118
Ударная нагрузка (we)	К	од дозирующ	его штока (хх	x)
До 1,7 тонны	051	101	151	201
До 3,5 тонны	052	102	152	202
До 7 тонн	053	103	153	203
До 13 тонн	054	104	154	204
До 25 тонн	055	105	155	205
До 50 тонн	056	106	156	206
До 100 тонн	057	107	157	207
До 200 тонн	058	108	158	208
До 400 тонн	059	109	159	209
До 800 тонн	-	110	_	210

Жирным шрифтом обозначены модели штоков для больших масс

Тип 4 — это блок с высоким энергопоглощением и коротким ходом. Это первый разработанный Oleo буфер для промышленного применения, созданный на базе железнодорожного буфера типа 4. Данный буфер имеет очень высокий эксплуатационный ресурс; нередко можно встретить буферы типа 4, возраст которых превышает 25 лет. Буферы типа 4 могут применяться в различных коммерческих секторах, однако традиционно они используются на сталелитейных предприятиях. Они также применяются в конструкциях разводных мостов, опрокидывателей вагонеток для транспортировки угла и отвалообразователей-отгрузчиков, когда выполняется медленное перемещение больших масс.

Статические данные				
Тип 4, макс. сила 1000 кН				
Тип	4			
Ход (S) (мм)	114			
Динамическое энергопоглощение (кДж)	91			
Максимально допустимая конечная сила (кН)	1000			
Статическая начальная сила (кН)	12			
Статическая конечная сила (кН)	120			

Расчетная масса в тоннах	Код дозирующего штока (хх)
1 - 4	02
4 - 10	04
10 - 20	05
20 - 40	07
40 - 80	08
80 - 125	10
125 - 300	12
300 - 750	16
750 - 1500	18


00)		
0			

Тип	4
Динамическое энергопоглощение (кДж)	91
Максимально допустимая сила удара (кН)	1000
Вес капсульного блока (MCZ) (кг)	38,3
Вес блока с задним монтажом (MBZ) (кг)	64,3
Вес блока с задним монтажом (MBZ) (кг)	61,3
Вес блока с передним монтажом (MFZ) (кг)	50,3
Ход (S) (мм)	114
L1 (мм) *задний монтаж, прямоугольный	515
L2 (мм) *задний монтаж, квадратный	546
L3 (MM)	235
L4 (мм) *задний монтаж, прямоугольный	178
L4 (мм) *задний монтаж, квадратный	209
L5 (MM) *задний монтаж, прямоугольный	19
L5 (MM) *задний монтаж, квадратный	22
L6 (MM)	21
L7 (MM)	61
L8 (мм)	20

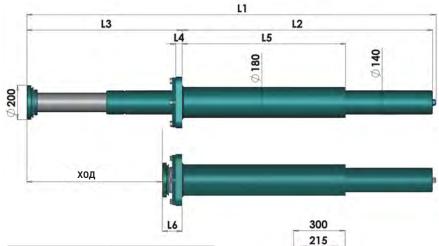
тип 9

Тип 9 был изначально разработан для мостовых кранов на сталелитейных предприятиях; это высокомощный блок с продолжительным сроком службы. На сегодняшний день тип 9, как правило, используется на доковых кранах и для тупиковых упоров. Тип 9 также используется в специализированных водных установках, таких как волноэнергетические преобразователи, имеющие специальные водонепроницаемые уплотнения и детали из нержавеющей стали для предотвращения коррозии.

РАЗМЕРЫ

Статические данные						
Тип 9, макс. сила 700 кН						
Тип	9					
Ход (S) (мм)	400					
Динамическое энергопоглощение (кДж)	224					
Максимально допустимая конечная сила (кН)	700					
Статическая начальная сила (кН)	12					
Статическая конечная сила (кН)	155					

r.r.e	and and a state of	May -	- Control of the Cont
	1		
12			
\mathcal{Y}^{-12}	V		


Расчетная масса в тоннах	Код дозирующего штока (хх)
1 - 4	02
4 - 10	04
10 - 20	05
20 - 40	07
40 - 80	08
80 - 125	10
125 - 300	12
300 - 600	15
600 - 1000	19
1000 - 2000	22

Жирным шрифтом обозначены модели штоков для больших масс

Тип	9
Динамическое энергопоглощение (кДж)	224
Максимально допустимая сила удара (кН)	700
Вес капсульного блока (MCZ) (кг)	62
Вес блока с задним монтажом (MBS) (кг)	87
Вес блока с передним монтажом (MFS) (кг)	78
Ход (S) (мм)	400
L1 (MM)	1205
L3 (мм)	678
L4 (MM)	19
L5 (MM)	114
L6 (мм)	210
L7 (мм)	19

Тип 15 представляет собой комбинацию из двух блоков типа 9, установленных последовательно, – как правило, используется в тупиковых упорах для железных дорог и для кранов как в доках, так и на оффшорных установках.

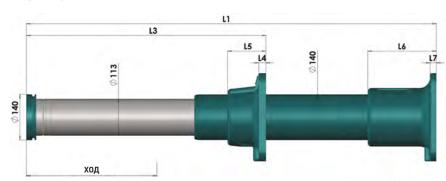
РАЗМЕРЫ

	YL
20'	40

Расчетная масса в тоннах	Код дозирующего штока (хх)
0,5 - 2	02
2 - 5	04
5 - 10	05
10 - 20	07
20 - 40	08
40 - 60	10
60 - 150	12
150 - 300	15
300 - 500	19
500 - 1000	22

Жирным шрифтом обозначены модели штоков для больших масс

Тип	15
Динамическое энергопо- глощение (кДж)	448
Максимально допустимая сила удара (кН)	700
Вес блока с передним монтажом (ММО) (кг)	195
Ход (S) (мм)	800
L1 (мм)	2385
L2 (мм)	1459
L3 (мм)	905
L4 (мм)	38
L5 (мм)	944
L6 (мм)	105


Статические данные		
Тип 15, макс. сила 700 кН		
Тип	15	
Ход (S) (мм)	800	
Динамическое энергопоглощение (кДж)	448	
Максимально допустимая конечная сила (кН)	700	
Статическая начальная сила (кН)	12	
Статическая конечная сила (кН)	155	


4 ОТВЕРСТИЯ Ø 32

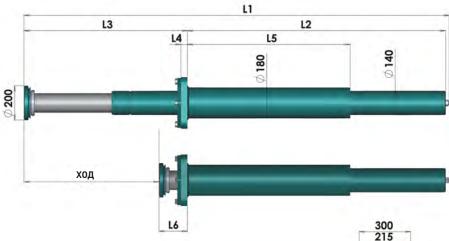
Тип 23 представляет собой немного удлиненную версию типа 9, позволяющую снизить статическую конечную силу для таких областей применения, где требуется полное сжатие буфера при низких скоростях.

Тип 23 был изначально разработан для мостовых кранов на сталелитейных предприятиях; это высокомощный блок с продолжительным сроком службы. На сегодняшний день тип 23, как правило, используется на доковых кранах.

РАЗМЕРЫ

Статические данные		
Тип 23, макс. сила 700 кН		
Тип	23	
Ход (S) (мм)	400	
Динамическое энергопоглощение (кДж)	224	
Максимально допустимая конечная сила (кН)	700	
Статическая начальная сила (кН)	12	
Статическая конечная сила (кН)	85	

Расчетная масса в тоннах	Код дозирующего штока (хх)
1 - 4	02
4 - 10	04
10 - 20	05
20 - 40	07
40 - 80	08
80 - 125	10
125 - 300	12
300 - 600	15
600 - 1000	19
1000 - 2000	22


Жирным шрифтом обозначены модели штоков для больших масс

Тип	23
Динамическое энергопоглощение (кДж)	224
Максимально допустимая сила удара (кН)	700
Вес капсульного блока (MCZ) (кг)	63
Вес блока с задним монтажом (MBS) (кг)	88
Вес блока с передним монтажом (MFS) (кг)	79
Ход (S) (мм)	400
L1 (MM)	1257
L3 (MM)	728
L4 (MM)	19
L5 (MM)	114
L6 (мм)	210
L7 (мм)	19

Тип 24 представляет собой комбинацию из двух блоков типа 23, установленных последовательно, - как правило, используется в тупиковых упорах для железных дорог и для кранов как в доках, так и на оффшорных установках.

РАЗМЕРЫ

Расчетная масса в тоннах	Код дозирующего штока (хх)
0,5 - 2	02
2 - 5	04
5 - 10	05
10 - 20	07
20 - 40	08
40 - 60	10
60 - 150	12
150 - 300	15
300 - 500	19
500 - 1000	22

Жирным шрифтом обозначены модели штоков для больших масс

Тип	24
Динамическое энергопоглощение (кДж)	448
Максимально допустимая сила удара (кН)	700
Вес блока с передним монтажом (ММО) (кг)	197
Ход (S) (мм)	800
L1 (мм)	2487
L2 (MM)	1516
L3 (мм)	950
L4 (мм)	38
L5 (MM)	962
L6 (мм)	150

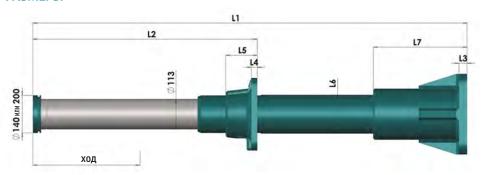
Статические данные		
Тип 24, макс. сила 700 кН		
Тип	24	
Ход (S) (мм)	800	
Динамическое энергопоглощение (кДж)	448	
Максимально допустимая конечная сила (кН)	700	
Статическая начальная сила (кН)	12	
Статическая конечная сила (кН)	85	

Как и тип 9, тип 50 может быть использован на таком оборудовании, как мостовые краны на сталелитейных предприятиях или доковые краны. Тип 50 рассчитан на более низкую максимальную силу и имеет более низкую конечную силу с величиной хода 250, 300 и 400 мм. Эти блоки, как правило, используются для главных стрел и главных тележек кранов класса корабль-берег.

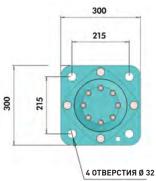
РАЗМЕРЫ

Статические данные			
Тип 50, макс. сила 500 кН			
Тип	52	53	54
Ход (S) (мм)	250	300	400
Динамическое энергопоглощение (кДж)	100	120	160
Максимально допустимая конечная сила (кН)	500	500	500
Статическая начальная сила (кН)	5	5	5
Статическая конечная сила (кН)	60	60	60

Тип	52	53	54
Динамическое энергопоглощение (кДж)	100	120	160
Максимально допустимая сила удара (кН)	500	500	500
Вес капсульного блока (MCS) (кг)	39	44	53
Вес блока с задним монтажом (MBS) (кг)	63	67	76
Вес блока с передним монтажом (MFS) (кг)	59	63	72
Ход (S) (мм)	250	300	400
L1 (MM)	872	1006,5	1277
L2 (MM)	850,5	985	1255,5
L3 (MM)	527,5	577	677
L4 (MM)	19	19	19
L5 (мм)	114	114	114
L6 (мм)	210	210	210
L7 (мм)	19	19	19


Расчетная масса в тоннах	Код дозирующего штока (ххх)		
1 - 2,5	202	302	402
2,5 - 5	203	303	403
5 - 10	204	304	404
10 - 20	205	305	405
20 - 40	207	307	407
40 - 80	208	308	408
80 - 150	210	310	410
150 - 300	212	312	412
300 - 600	215	315	415
600 - 1000	219	319	419
1000 - 2000	222	322	422

Жирным шрифтом обозначены модели штоков для больших масс

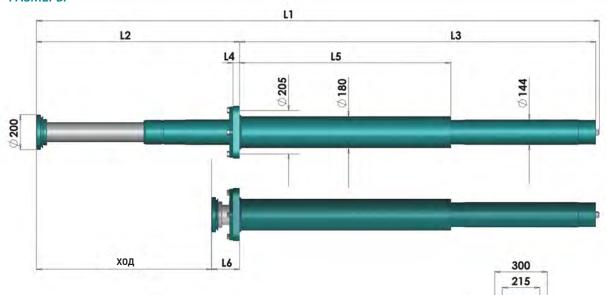


Тип 70 — это буферы, рассчитанные на 700 кH, с большой длиной хода, составляющей 500 и 600 мм. Как правило, эти буферы используются на доковых кранах и на сталелитейных предприятиях. Буферы типа 70 также используются в горнодобывающей промышленности, так как их можно устанавливать вертикально. Они также используются для тупиковых упоров на канатных железных дорогах, поскольку их можно устанавливать под углом.

РАЗМЕРЫ

Статические данные								
Модельный ряд Тип 70, макс. сила 700 кН								
Тип	75	76						
Ход (S) (мм)	500	600						
Динамическое энергопоглощение (кДж)	280	336						
Максимально допустимая конечная сила (кН)	700	700						
Статическая начальная сила (кН)	12	12						
Статическая конечная сила (кН)	55	150						

Тип	75	76
Динамическое энергопоглощение (кдж)	280	336
Максимально допустимая сила удара (кН)	700	700
Вес капсульного блока (MCZ) (кг)	87	88
Вес блока с задним монтажом (MBZ) (кг)	144	145
Вес блока с передним монтажом (MFZ) (кг)	102	103
Ход (Х) (мм)	500	600
L1(MM)	1599	1699
L1(мм) - с задним монтажом	1620	1720
L2(мм)	832	932
L3(MM)	30	30
L4(MM)	19	19
L5(MM)	114	114
L6(мм)	144	144
L7(mm)	350	350


Расчетная масса в тоннах	Код дозирующего штока (ххх)					
2,5 - 5	503	603				
5 - 10	504	604				
10 - 20	505	605				
20 - 40	507	607				
40 - 80	508	608				
80 - 150	510	610				
150 - 300	512	612				
300 - 600	515	615				
600 - 1000	519	619				
1000 - 2000	522	622				

Жирным шрифтом обозначены модели штоков для больших масс

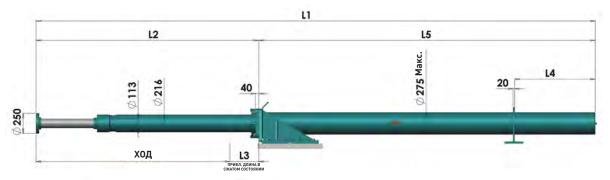
Буферы типа 700 представляют собой комбинацию из нескольких последовательно установленных буферов типа 70 – как правило, они используются в тупиковых упорах для железных дорог и для кранов как в доках, так и на оффшорных установках. На сегодняшний день тип 700 все чаще используется для доковых кранов, поскольку последние становятся все больше, а скорость их движения — все быстрее, что обуславливает необходимость установки более мощных энергопоглощающих буферов.

РАЗМЕРЫ

4 ОТВЕРСТИЯ Ø 32

Статические данные										
Тип 700, макс. сила 700 кН										
Тип	710	711	712							
Ход (S) (мм)	1000	1100	1200							
Динамическое энергопоглощение (кДж)	560	616	672							
Максимально допустимая конечная сила (кН)	700	700	700							
Статическая начальная сила (кН)	12	12	12							
Статическая конечная сила (кН)	55	145	145							

Тип	710	711	712
Динамическое энергопоглощение (кДж)	560	616	672
Максимально допустимая сила удара (кН)	700	700	700
Вес блока с передним монтажом (ММО) (кг)	244	245	246
Ход (S) (мм)	1000	1100	1200
L1 (мм)	3218	3318	3418
L2 (мм)	1160	1260	1360
L3 (мм)	2037	2037	2037
L4 (MM)	37,5	37,5	37,5
L5 (MM)	1208	1208	1208
L6 (мм)	160	160	160

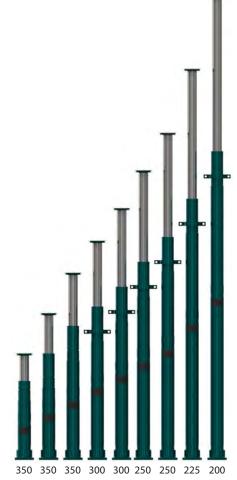

Расчетная масса в тоннах	Код дози	Код дозирующего штока(ххх)				
2,5 - 5	1004	1104	1204			
5 - 10	1005	1105	1205			
10 - 20	1007	1107	1207			
20 - 40	1008	1108	1208			
40 - 75	1010	1110	1210			
75 - 150	1012	1112	1212			
150 - 300	1015	1115	1215			
300 - 500	1019	1119	1219			
500 - 1000	1022	1122	1222			
1000 - 2000	1024	1124	1224			

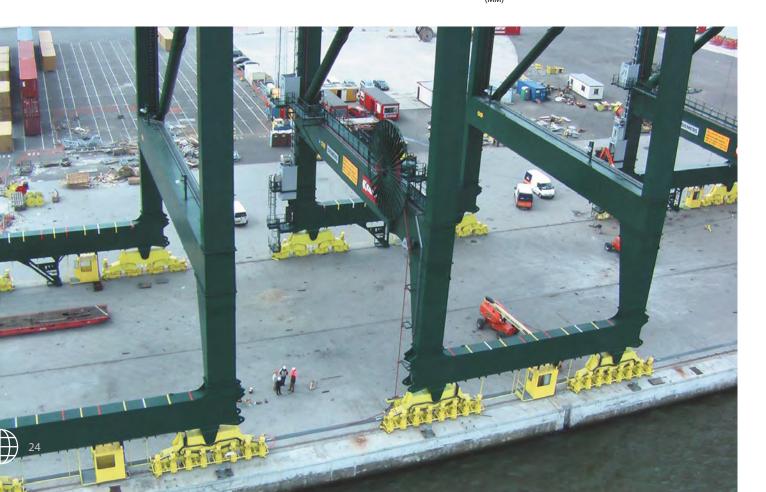
Жирным шрифтом обозначены модели штоков для больших масс

Эти буферы, как правило, используются в качестве тупиковых упоров и собираются из нескольких блоков типа 70, размещаемых в одном корпусе. Они могут быть установлены либо на сборной конструкции, либо на армированном бетонном блоке. Эти длинноходные буферы, как правило, используются в сочетании с буферной тележкой, чтобы обезопасить их от разрушительного воздействия смещающих нагрузок.

РАЗМЕРЫ

Статические данные									
Модельный ряд Тип 700, макс. сила 700 кН									
Тип 718 720 724 730									
Ход (S) (мм)	1800	2000	2400	3000					
Динамическое энергопоглощение (кДж)	1008	1120	1344	1680					
Максимально допустимая конечная сила (кН)	700	700	700	700					
Статическая начальная сила (кН)	12	12	12	12					
Статическая конечная сила (кН)	150	55	150	150					


Тип	718	720	724	730
Динамическое энергопоглощение (кДж)	1008	1120	1344	1680
Максимально допустимая сила удара (кН)	700	700	700	700
Вес блока с монтажом на опоре (ММО) (кг)	-	1500	2288	2345
Вес блока с передним монтажом (ММО) (кг)	1090	-	1692	1749
Ход (S) (мм)	1800	2000	2400	3000
L1 (MM)	5265	5980	6952	8625
L2 (мм)	2199	2270	2770	3358
L3 (мм)	402	269	356	358
L4 (MM)	550	1000	1000	1000
L5 (мм)	3066	3710	4187	5267



ОБЗОР ЛИНЕЙКИ СЕРИЙ 110

Серия 110											
	Диапазон буфера	200	300	400	500	600	700	800	1000	1200	
Поглощае- мая энергия/бу фер (кДж)	Максималь- но допусти- мая сила (кН)	350	350	350	300	300	250	250	225	200	
	Ход (мм)	200	300	400	500	600	700	800	1000	1200	
1		7	4	3	3	2	2	2	1	1	
2.5		17	11	8	7	6	5	4	3	3	
5		33	22	17	13	11	10	8	7	6	
10		67	44	33	27	22	19	17	13	11	
20		133	89	67	53	44	38	33	27	22	
30		200	133	100	80	67	57	50	40	33	
40	_	267	178	133	107	89	76	67	53	44	
50	Силы, генерируемые	333	222	167	133	111	95	83	67	56	
60	на один		267	200	160	133	114	100	80	67	
80	буфер (кН)			267	213	178	152	133	107	89	
100				333	267	222	190	167	133	111	
150								250	200	167	

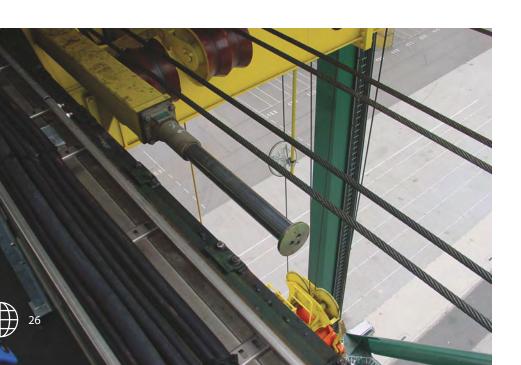
Сила (кH) 350 350 350 300 300 250 250 225 200 (кH) Xод (мм) 200 300 400 500 600 700 800 1000 1200

Универсальная модульная конструкция буфера типа 110 позволяет использовать одинаковые компоненты в различных сферах применения.

Буферы типа 110 выпускаются со стандартным хромовым покрытием для использования в некоррозийных условиях, таких как заводские цеха, и с опциональным водозащитным покрытием для более коррозийных условий, таких как доки и порты.

Тип 110 рассчитан на использование при следующих условиях:

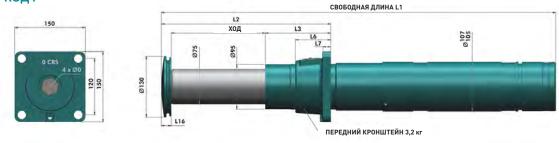
- 3 500 циклов при 10% от номинальной нагрузки (соответствует ежедневной нагрузке на блок в течение 10 лет эксплуатации)
- 500 циклов при 50% от номинальной нагрузки (соответствует еженедельной нагрузке на блок в течение 10 лет эксплуатации)
- 12 циклов при полной нагрузке, что соответствует:
 - одному установочному испытанию;
 - одному испытанию каждые 10 лет;
 - одному циклу работы в аварийном режиме.
- Диапазон температуры эксплуатации от -30 до +100 °C.


Таблица рабочих характеристик										
Ход (мм)	200	300	400	500	600	700	800	1000	1200	
Максимальная конечная сила (кН)	350	350	350	300	300	250	250	225	200	
Угол удара (код F, D, T)	2,5°	2,5°	2,5°	2,0°	2,0°	2,0°	2,0°	1,5°	1,5°	
Угол удара (код В)	1,5°	1,5°	1,5°	нет	нет	нет	нет	нет	нет	
Диаметр головки (мм)	130	130	130	130	130	130	130	130	130	
Максимальная поглощенная энергия (кДж)	53	78	105	112	135	131	150	170	180	

Ход	Свобод	цная дли	ина	ļ	Кроншт	гейн									Масса (кг)		
S		оков с гос и L11 и L [*] L1 и L2			L3	L4	L5	L6	L7	L8	L9	L10	L13	L14	L15	L16	Только капсула
	L1	L11	L2	L12													
200	839	849	360	370	139	539	474	75	18	79	18	30	15	76	30	21	28,7
300	1155	1165	578	588	257	637	572	75	18	79	18	30	15	76	30	21	37,2
400	1469	1479	678	688	257	851	786	75	18	79	18	30	15	76	30	21	46,2
500	1720	1730	778	788	257	1002	938	75	18	79	18	30	15	76	30	21	52,3
600	1975	1985	878	888	257	1157	1092	75	18	79	18	30	15	76	30	21	59,6
700	2270	2280	978	988	257	1352	1288	75	18	79	18	30	15	76	30	21	66,7
800	2564	2574	1078	1088	257	1547	1482	75	18	79	18	30	15	76	30	21	76,4
1000	3064	3074	1278	1288	257	1846	1781	75	18	79	18	30	15	76	30	21	89,5
1200	3635	3645	1478	1488	257	2217	2152	75	18	79	18	30	15	76	30	21	105,4

Опции регулировки											
Ход (мм)	200	300	400	500	600	700	800	1000	1200		
Масса (тонны)											
до 5	02	-	-	-	-	-	-	-	-		
от 5 до 12,5	04	04	04	04	-	-	-	-	-		
от 10 до 25	05	05	05	05	05	05	05	05	05		
от 20 до 50	07	07	07	07	07	07	07	07	07		
от 40 до 100	08	08	08	08	08	08	08	08	08		
от 80 до 200	10	10	10	10	10	10	10	10	10		
от 150 до 350	12	12	12	12	12	12	12	12	12		
от 300 до 700	15	15	15	15	15	15	15	15	15		
от 600 до 1250	19	19	19	19	19	19	19	19	19		
от 1000 до 2500	22	22	22	22	22	22	22	22	22		

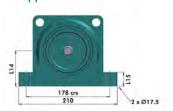
Тип 110 Максимально допустимая конечная сила				
Варианты монтажа	Код F, D, T		Код В	
Ход буфера	Макс. сила (кН)	Макс. угол удара*	Макс. сила (кН)	Макс. угол удара*
200 мм	350	2,5	225	1,5
300 мм	350	2,5	200	1,5
400 мм	350	2,5	200	1,5
500 мм	300	2,0	нет	нет
600 мм	300	2,0	нет	нет
700 мм	250	2,0	нет	нет
800 мм	250	2,0	нет	нет
1000 мм	225	1,5	нет	нет
1200 мм	200	1,5	нет	нет

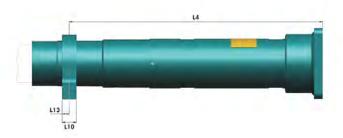


ИСПОЛЬЗОВАНИЕ

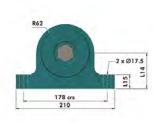
Для типа 110 предлагается ряд монтажных конфигураций:

- Передний монтаж
- Задний монтаж (только с ходом 200, 300 и 400 мм)
- Задний
- Монтаж на опоре, передний и задний


ПЕРЕДНИЙ МОНТАЖ КОД F



ЗАДНИЙ МОНТАЖ КОД В


ЗАДНИЙ МОНТАЖ С ПЕРЕДНЕЙ ОПОРОЙ КОД D

МОНТАЖ НА ДВУХ ОПОРАХ

ПРИМЕЧАНИЕ

* У блоков с гофрированными чехлами L1 и L2 длина +10 мм Задний монтаж –ТОЛЬКО С ХОДОМ 200, 300 и 400 мм

Монтаж на двух опорах – Для блоков, монтируемых на опорах, требуется ограничительный упор, так как не следует допускать, чтобы буферные нагрузки прилагались только к монтажным болтам опоры.

ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ

Для промышленных буферов Oleo предлагается следующее дополнительное оборудование:

Плунжеры с водостойким покрытием. Такое покрытие необходимо, если оборудование подвергается воздействию соли или агрессивных промышленных загрязнений атмосферы.

Высокотемпературные уплотнения. Такие уплотнения необходимы при сочетании высокого коэффициента использования и высокой окружающей температуры.

Проволочные замки. Такие замки используются, если это требуется в технических характеристиках, например, в соответствии со стандартами AISE, OSHA и т.д. (только для тарелок Ø125 мм).

Гофрированные чехлы. Такие чехлы используются в коррозийной и пыльной среде для защиты плунжера от загрязнений, соли, химикалий и т. д.

ПЕРЕДНИЙ МОНТАЖ БУФЕРА С ГОФРИРОВАННЫМ ЧЕХЛОМ

ПЕРЕДНИЙ МОНТАЖ БУФЕРА С ПРОВОЛОЧНЫМ ЗАМКОМ

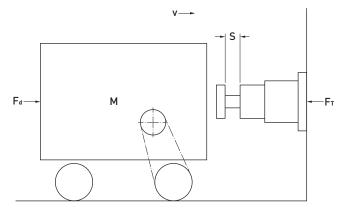
ПЕРЕДНИЙ МОНТАЖ БУФЕРА С ГОФРИРОВАННЫМ ЧЕХЛОМ И ПРОВОЛОЧНЫМ ЗАМКОМ

ЗАДНИЙ МОНТАЖ БУФЕРА С ПРОВОЛОЧНЫМ ЗАМКОМ

При особо неблагоприятных окружающих условиях, в химически агрессивных зонах или в местах, где полимеры подвергаются разрушительному химическому воздействию, клиентам рекомендуется связаться с представителями или агентами Oleo, чтобы организовать проведение инженерной экспертизы и получить рекомендацию.

БЛОКИ НА ЗАКАЗ

Блоки на заказ изготавливаются для удовлетворения специальных требований клиентов. Сюда относятся следующие изменения конструкции:


- Изготовление по специальным размерам
- Кронштейны и адаптированные элементы для обеспечения соответствия контактным поверхностям клиента
- Специальная покраска для эксплуатации при неблагоприятных окружающих условиях
- Специальное покрытие для эксплуатации при неблагоприятных окружающих условиях
- Специальные уплотнения для использования в морской окружающей среде

Представители Oleo всегда готовы к сотрудничеству с клиентами для разработки энергопоглощающих решений, удовлетворяющих их технические требования. Для получения более подробной информации, пожалуйста, свяжитесь с нами.

ГОРИЗОНТАЛЬНЫЙ УДАР

ОБЩЕЕ ЗАМЕЧАНИЕ ПО СИМВОЛАМ

Во избежание путаницы с условными обозначениями в формулах следует всегда использовать единицы системы СИ и лишь затем переводить их в требуемые единицы (при необходимости).

Символ	Количество	Единица сис	темы СИ
M	Масса тела		КГ
M_e	Конструктивная масса буф	рера	КГ
S	Ход буфера		М
E_k	Кинетическая энергия		Дж
E _d	Энергия в результате тяго	вого усилия	Дж
E _T	Общая энергия		Дж
V	Скорость		м/с
Fi	Сила инерции		Н
F_d	Тяговое усилие		Н
F _T	Общая сила		Н
n	Кол-во параллельно устан	овленных	-
	буферов		
ξ	Эффективность		-

Поглощаемая кинетическая энергия	$E_k = \frac{Mv^2}{2}$
Поглощаемая энергия в результате тягового усилия	$E_d = F_d S$
Общая поглощаемая энергия	$E_T = E_k + E_d$
Максимальная сила удара в результате инерции	$F_i = \frac{E_k}{S\xi}$
Общая максимальная сила удара	$F_T = F_i + F_d$
Конструктивная масса буфера	$M_e = 2.E_T$

 nv^2

Пример расчетов

Пример. Рассмотрим тело массой $M = 20000 \, \text{kr}$ (20 тонн), движущееся со скоростью (v) 1,5 м/с с тяговым усилием (F_d) 20 кH (20000 H).

Для нахождения поглощаемой энергии:

 $E_k = 1/2 \text{ MV}^2 = ((20000 \, \text{кг}) \, \text{x} \, (1,5 \, \text{m/c})^2)/2 = 22500 \, \text{Дж} = 22,5 \, \text{кДж}$

Исходя из этого выбираем тип 21-150

 $E_d = F_d.S = 20000 H x 0,15 M = 3000 Дж = 3 кДж$

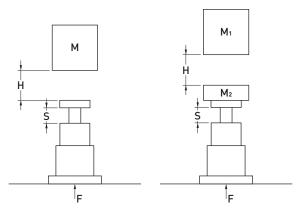
Общее количество поглощаемой энергии

 $E_T = E_k + E_d = 22500 \, \text{Дж} + 3000 \, \text{Дж} = 25500 \, \text{Дж} = 25,5 \, \text{кДж}$

Для нахождения максимальной силы удара:

 $F_{i max} = E_k / (S. \xi) = 22500 \, \text{Дж} / (0,15 \text{м} \times 0.8) = 187500 \, \text{H} = 187.5 \, \text{кH}$

 $F_{d \text{ max}} = 20000 H = 20 \kappa H$


 $F_{T max} = F_{i max} + F_{d max} = 187500 H + 20000 H = 207500 H = 207,5 kH$

Для нахождения конструктивной массы буфера в целях подбора дозирующего штока:

 $M_e = 2.E_T / (n.v^2) = 2 x 25500 Дж / (1 x 1,5 м/c)^2 = 22667 кг = 22,667 тонны$

Чтобы удовлетворить этим требованиям, выбираем буфер типа 21-150 с динамическим энергопоглощением 30 кДж и максимально допустимой нагрузкой 250 кН. Исходя из этого выбираем дозирующий шток код 155 для масс до 25000 кг (25 тонн).

ВЕРТИКАЛЬНЫЙ УДАР

ОБЩЕЕ ЗАМЕЧАНИЕ ПО СИМВОЛАМ

Во избежание путаницы с условными обозначениями в формулах следует всегда использовать единицы системы СИ и лишь затем переводить их в требуемые единицы (при необходимости).

Символ	Количество	Единица сист	емы СИ
M	Масса тела		КГ
M_1	Масса тела 1		КГ
M_2	Масса тела 2		КГ
M_e	Конструктивная масса буфера кг		КГ
Н	Высота свободного падені	ия	М
S	Ход буфера		М
Ep	Потенциальная энергия		Дж
V	Скорость		M/C
F	Максимальная сила удара		Н
g	Ускорение свободного пад	дения	M/C^2
n	Кол-во параллельно устан	овленных	
	буферов		-
ξ	Эффективность		-

Случай с одной массой:

Поглощаемая потенциальная $E_p = Mg(H+S)$

энергия

Максимальная сила удара $F = \frac{E_p}{SE}$

Конструктивная масса буфера $M_e = \frac{2E_p}{nv^2}$

ИЛИ $M_e = \frac{M(H+S)}{nH}$

Начальная скорость плунжера $v = \boxed{2gH}$

Случай с несколькими массами:

Поглощаемая потенциальная $E_p = M_1g (H+S) + M_2gS$

энергия

Максимальная сила удара $F = \frac{E_p}{S\xi}$

Начальная скорость плунжера $v = \left(\frac{M_1}{M_1 + M_2}\right) \sqrt{2gH}$

Конструктивная масса буфера $M_e = \frac{2E_p}{nv^2}$

Пример расчетов

Пример. Рассмотрим тело массой (M_1) = 22000 кг (22 тонны) / свободно падающее на другое тело (M_2) 3000 кг (3 тонны), поддерживаемое буфером. Высота свободного падения (H) 0,15м. Типичным примером являются буферы ловителей шахтных клетей, где используются 4 буфера типа 4 с ходом 114мм; в данном случае учитываются несколько масс.

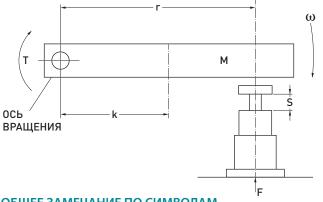
Для нахождения эквивалента поглощаемой энергии:

 $E_p = M_1 g (H+S) + M_2 g S = (22000)x(0,15+0,114) x 9,81 + 3000 x 9,81 x 0,114 = 60331,5 Дж = 60,3315 к Дж$

Для нахождения максимальной конечной силы удара:

$$F = E_{p} = \frac{60331,5}{0,114 \times 0.8}$$

 $F = 661529,6H = 661,5296\kappa H$


Для нахождения эквивалента массы в целях подбора дозирующего штока:

Начальная скорость плунжера $v = \frac{M_1 \sqrt{2gH}}{M_1 + M_2} = \frac{22000 \text{ x} \sqrt{2 \text{ x 9,81 x 0,15}}}{22000 + 3000} = 1,5\text{м/c}$

Конструктивная масса буфера $M_e = \frac{2E_p}{nv^2} = \frac{2 \times 60331,5}{4 \times 1,5^2} = 13407 \, \text{кг} = 13,4 \, \text{тонны}$

При выборе буфера типа 4 с динамическим энергопоглощением 1000кН эти требования будут удовлетворены. Исходя из этого выбираем дозирующий шток код 05 для масс до 20000кг (20 тонн).

КРУТЯЩИЙ УДАР

ОБЩЕЕ ЗАМЕЧАНИЕ ПО СИМВОЛАМ

Во избежание путаницы с условными обозначениями в формулах следует всегда использовать единицы системы СИ и лишь затем переводить их в требуемые единицы (при необходимости).

Символ	Количество	Единица сист	емы СИ
M	Масса тела		КГ
M_e	Конструктивная масса буфера		КГ
S	Ход буфера		M
k	Радиус кругового движения		M
E_k	Кинетическая энергия		Дж
E_d	Энергия в результате тягового у	/силия	Дж
E _T	Общая энергия		Дж
ω	Угловая скорость		рад/с
1	Момент инерции		$K\Gamma M^2$
Τ	Крутящий момент		Нм
F	Сила удара		Н
n	Кол-во параллельно установлен	ных буферов	_
ξ	Эффективность		-

Основная формула

Поглощаемая кинетическая энергия $E_k = \frac{I\omega^2}{2} = \frac{Mk^2\omega^2}{2}$

Энергия в результате тягового усилия $E_d = \frac{TS}{r}$

Общая поглощаемая энергия $E_T = E_k + E_d$

Максимальная сила удара $F = \frac{E_T}{S\xi}$

Конструктивная масса буфера $M_{e} = \frac{2 E_{T}}{n (\omega r)^{2}}$

Пример расчетов

Пример. Рассмотрим разводной мост, имеющий момент инерции (I) 7500000 кгм², радиус плеча буфера (r) 8 м, угловую скорость (ω) 0,174 рад/с и крутящий момент привода (T) 1500000 Нм. Используются 2 буфера.

Для нахождения поглощаемой энергии:

$$E_k = \frac{I\omega^2}{2} = \frac{7500000 \times 0,174^2}{2} = 113535 \,\text{Дж} = 113,.54 \,\text{кДж}$$

Выбираем тип 4 с ходом 114 мм:

$$E_d = \frac{TS}{r} = 1\frac{500000 \times 0,114}{9} = 21,375 \text{ кДж}$$

Общее количество поглощаемой энергии:

Таким образом $E_T = E_k + E_d = 113535 + 21375 = 134910 Дж = 134,91 кДж$

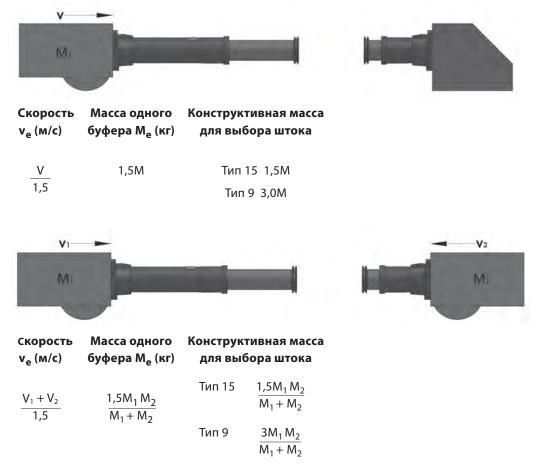
Для нахождения максимальной силы удара:

$$F = E_T = 134910 = 1479276 \text{ N} = 1479,3 \text{ kN}$$

Sξ 0,114 x 0,8

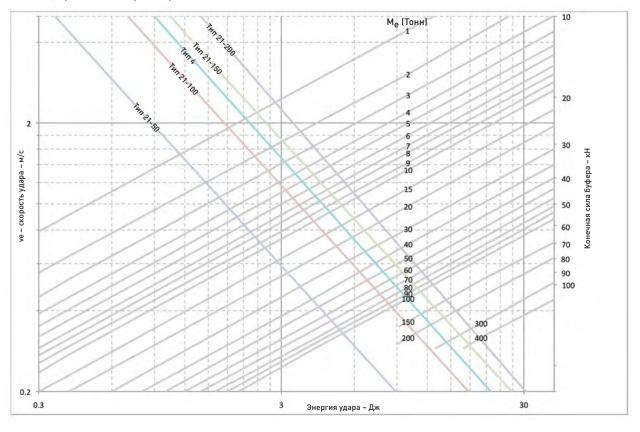
Для нахождения эквивалента массы в целях подбора дозирующего штока:

$$M_e = \frac{2E_T}{n (\omega r)^2} = \frac{2 \times 134910}{2 \times (0.174 \times 8)^2} = 69,625 \text{ tonnes}$$


Исходя из этого выбираем дозирующий шток код 08 для масс до 80000 кг (80 тонн).

СЛУЧАИ ПРИЛОЖЕНИЯ НАГРУЗКИ

ДЛЯ ИСПОЛЬЗУЕМЫХ ВМЕСТЕ БУФЕРОВ ОДНОГО И ТОГО ЖЕ ТИПА


для используемых вместе вуферов одного и того же типа	Случай №	Скорость V _e (м/с)	Масса одного буфера М _е (кг)
M V-	1	V	М
	2	<u>V</u> 2	2M
M1 V1-	3	$V_1 + V_2$	$\frac{M_1M_2}{M_1+M_2}$
M: v: M:	4	$\frac{V_1 + V_2}{2}$	$\frac{2M_1M_2}{M_1+M_2}$

ДЛЯ ИСПОЛЬЗУЕМЫХ ВМЕСТЕ БУФЕРОВ РАЗЛИЧНЫХ ТИПОВ С ОДИНАКОВЫМ ДИАМЕТРОМ ЦИЛИНДРА (например, ТИП 9 С ТИПОМ 15)

НОМОГРАММА

Таблица рабочих характеристик

Перед обращением к данной таблице необходимо узнать массу удара «М_{е»} и скорость удара «v_e» движущейся машины. У машин с большим расстоянием между рельсами, таких как мостовые краны, нагрузки на каждый рельс могут значительно отличаться из-за несимметричного расположения груза или положения тележки. В таких случаях ОБЯЗА-ТЕЛЬНО следует рассматривать максимальную массу нагрузки на рельс отдельно, и каждая сторона моста должна анализироваться отдельно.

Как пользоваться данной таблицей:

Ударное воздействие на упоры (Удары в случаях 1 или 2, см стр. 10)

Прочертите горизонтальную линию от шкалы «v_e» поперек таблицы, до точки пересечения с наклонной линией массы удара «M_e». Через эту точку прочертите вертикальную линию до нижней шкалы, чтобы получить энергию удара, поглощаемую буфером. От точек, в которых данная вертикальная линия пересекает диагональные линии буферов, прочертите горизонтальные линии к правой шкале, чтобы получить значения силы на буфер.

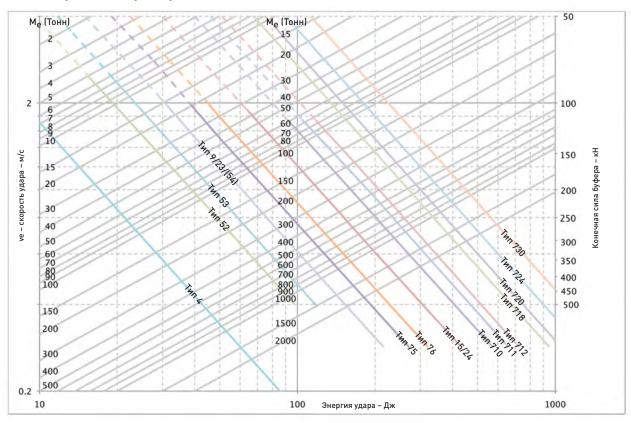
В некоторых случаях в таблице невозможно будет найти точки пересечения линии скорости и линии массы удара. Это означает что количество поглощаемой энергии превышает характеристики энергопоглощения одного буфера, и вышеозначенные

действия следует повторить для случая удара 2, т. е. добавить еще один буфер, убедившись в том, что значения массы удара «М_е» и скорости удара «V_{е»} правильны. Требуемая формула приведена в разделе Случаи приложения нагрузки.

Ударное воздействие двух движущихся конструкций (Удары в случаях 3 или 4)

Порядок действий тот же, что указан выше, однако сначала следует скорректировать массу удара «М_е» и скорость удара «v_{e»}, используя формулу в разделе «Случаи приложения нагрузки», в которой учитывается масса и скорость обеих машин.

Начните со случая 3 и повторите расчеты, используя случай 4, если параметры энергопоглощения буфера были превышены или сопротивление буфера слишком высокое, т. е. добавьте дополнительный буфер.


Буферы, устанавливаемые параллельно

Условия удара 1-4 описывают случаи использования одного буфера или двух буферов, устанавливаемых последовательно. Для дополнительного повышения уровня энергопоглощения такие конструкции могут дублироваться для совместного распределения сил. При использовании такого решения указанная в таблице масса удара «М_е» делится на два.

Такие конструкции имеют преимущество в тех случаях, когда длина ограничена и силы, воздействующие на упор, не являются существенным фактором. В таком случае сдвоенный вариант случая 1 может быть использован вместо случая 2.

НОМОГРАММА

Таблица рабочих характеристик

Пример - мостовой кран

Общий вес крана	700 тонн	
Вес тележки	200 тонн	
Скорость крана	0,6 м/с	

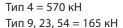
Буферы на случай столкновения крана с тупиковым упором

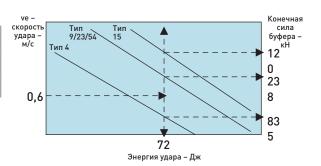
Возьмем условия удара случая 1

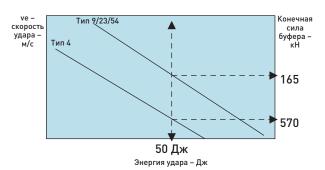
Масса, действующая на рельс, рассчитывается отдельно для каждого моста мостового крана. Масса моста крана ТОЛЬКО на одном конце = 250 000 кг = 250 тонн

Дополнительно учитывается масса крановой тележки, расположенной в этом конце

 $(0,75 \ \text{от} \ \text{полной ширины} \ \text{пролета}) = 150 \ 000 \ \text{кг} = 150 \ \text{тонн}$ $M_{e} = 150\ 000\ кг + 250\ 000\ кг = 400\ тонн$


максимальная скорость удара, $v_e = 0.6 \text{ м/c}$


Согласно таблице: Энергия, поглощаемая одним буфером = 72 кДж


> Сила буфера типа 4 = 835 кН Сила буфера типа 9 = 238 кН* Сила буфера типа 15 = 120 кН

* Оптимальным вариантом является буфер типа 9

Пример: буфер для объекта, сталкивающегося с тупиковым упором, при этом требуемая максимальная энергия удара не должна превышать 50 кДж. Для оценки конечной силы используйте номограмму.

МЫ ПРЕДОСТАВЛЯЕМ НЕ ПРОСТО ИЗДЕЛИЯ, А КОМПЛЕКСНЫЕ РЕШЕНИЯ

ГЛАВНЫЙ ОФИС: Grovelands Longford Road Exhall Coventry CV7 9NE UK
Тел.: +44 (0)24 7664 5555 Факс: +44 (0)24 7664 5900 Эл. почта: info@oleo.co.uk OLEO.CO.UK

Примечания, касающиеся всех промышленных буферов Oleo:

Допустимый диапазон температуры окружающей среды от –25 до +70 °C. Примечание: по вопросам эксплуатации в особых условиях за пределами указанного диапазона просим обращаться к специалистам Oleo International.

OLEO International является подразделением компании T A Savery and Co Limited, входящей в корпорацию Brigam Limited. T A Savery and Co Limited является компанией, зарегистрированной в Англии и Уэльсе под номером 00272170, с офисом по aдресу Grovelands, Longford Road, Exhall, Coventry, CV7 9NE, UK

Издание 3, мая 2013 г.