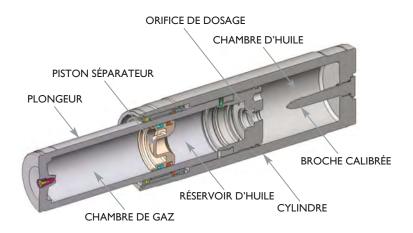
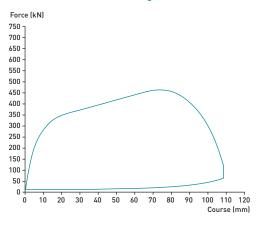


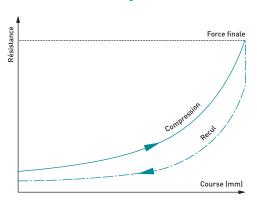
SECTEUR INDUSTRIEL PRODUITS HYDRAULIQUES À GAZ



PRINCIPE DE FONCTIONNEMENT HYDRAULIQUE


Le schéma illustre la construction robuste de l'amortisseur hydraulique Oleo. Sous l'effet de l'impact, le plongeur est enfoncé dans le cylindre et déplace l'huile au travers de l'orifice, actionnant ainsi le piston séparateur et comprimant le gaz. Le gaz comprimé agit sur l'huile par le biais du piston séparateur, pour créer la force de recul nécessaire au retour du plongeur après l'impact. L'énergie absorbée et dissipée dépend de la vitesse de fermeture.

Lorsque le plongeur est enfoncé rapidement dans le cylindre, l'huile déplacée par le plongeur doit traverser l'orifice très rapidement. Ceci augmente la pression dans la chambre d'huile jusqu'à un niveau qui optimise la force de fermeture de l'amortisseur.


Ce processus d'optimisation assure l'absorption uniforme de l'énergie d'impact sur toute la course du plongeur et le maintien d'une force d'impact uniforme. Cette caractéristique très utile est due aux systèmes de dosage novateurs d'Oleo qui modifient progressivement la zone d'écoulement pendant la fermeture de l'amortisseur. Les dispositifs de dosage font l'objet de calculs précis, afin de fournir la meilleure protection possible au matériel roulant à des vitesses d'impact spécifiées.

L'amortisseur hydraulique Oleo bénéficie donc d'un avantage unique, à savoir que ses caractéristiques varient en fonction des besoins opérationnels. La plus grande partie de l'énergie d'impact est absorbée par le dispositif et la force de recul, déjà faible, est amortie par l'écoulement inverse de l'huile, ce qui ne renvoie que très peu d'énergie et de force de recul vers le véhicule impacteur.

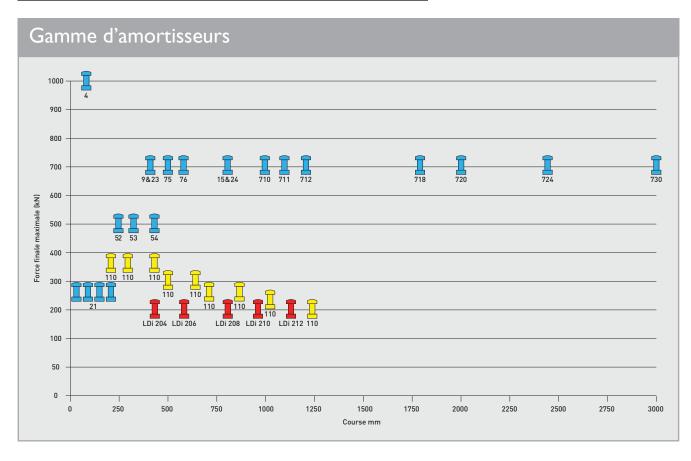
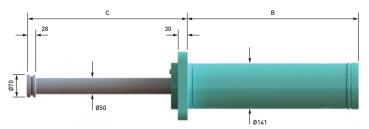

DIAGRAMME DYNAMIQUE

DIAGRAMME STATIQUE

SÉLECTION DES AMORTISSEURS

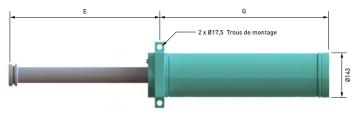
- La gamme LDI est adaptée aux applications de service léger telles que les chariots grues et les empileurs à faible masse, ainsi que les équipements automatiques et les chariots de préparation des commandes dans les entrepôts.
- Les amortisseurs de la gamme service intensif Oleo offrent des caractéristiques de force et de course adaptées à des applications contraignantes, par exemple dans les aciéries ou sur les grues de quais, et sont utilisables pour les solutions à butées, pour le fonctionnement sûr des équipements mobiles à masse élevée et la protection contre les chocs d'impact.
- La gamme IIO est de type modulaire et offre une protection rentable contre les impacts pour des applications très variées.

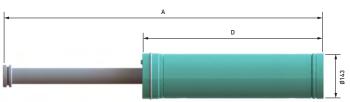


GAMME LDI SÉRIE 200

Les amortisseurs pour service léger de la gamme LDi sont basés sur le même principe hydraulique que ceux de la gamme service intensif, mais sont utilisés pour des charges légères pour des applications industrielles très diverses.

La gamme LDi a été conçue initialement pour un usage en entrepôts étant donné que les amortisseurs peuvent avoir une course complète sous charge faible, ce qui permet leur fermeture complète lorsqu'un chariot ou un empileur est conduit jusqu'à l'extrémité d'une allée. Ces amortisseurs sont aussi utilisés sur des chariots ou sur des petites grues de transbordement STS (STS = ship to shore/navire à quai) et ont une plage de service de 400 mm à 1200 mm.

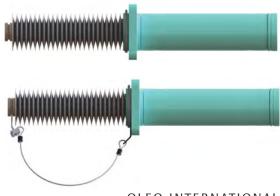

MONTAGE À BRIDE AVANT


MONTAGE À PATTE DE FIXATION

MONTAGE À PATTE DE FIXATION AVANT ET SUPPORT

CAPSULE/MONTAGE ARRIÈRE

Performance					
Modèle	204	206	208	210	212
Course (mm)	400	600	800	1000	1200
Capacité maximale (kJ)	68	102	136	170	204
Force finale maximale (kN)	200	200	200	200	200
Force de fermeture (kN)	2	2	2	2	2


Dimensions					
Modèle	204	206	208	210	212
A	1022	1447	1872	2297	2722
В	527	752	977	1202	1427
С	495	695	895	1095	1295
D	578	803	1028	1253	1478
E	481	681	881	1801	1281
F	526	75 I	976	1201	1426
G	541	766	991	1216	1441

Toutes des dimensions sont en mm

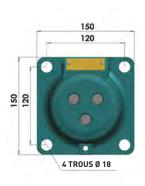
Remarque : Le cylindre de l'amortisseur nécessite un trou de passage de Ø146 mm

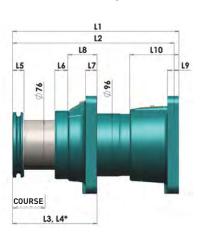
Remarque: Les unités à montage à pattes de fixation doivent avoir une butée arrière, car les charges de l'amortisseur ne doivent pas être exercées uniquement sur les boulons de fixation des pattes.

Ne pas intégrer les amortisseurs dans des applications à chargement latéral sans consulter au préalable votre représentant Oleo. Pour d'autres applications et configurations, veuillez contacter votre représentant Oleo.

VUE D'ENSEMBLE DE LA GAMME – SÉRIE SERVICE INTENSIF

Énergie à	Gamme d'amortisseurs	21	21	21	21	52	53	54	9	23	15	24	75	76	710	711	712	718	720	724	730	4
absorber/ amortisseur	Force finale maximale																					
(kJ)	possible kN	250	250	250	250	500	500	500	700	700	700	700	700	700	700	700	700	700	700	700	700	1000
	Course mm	50	100	150	200	250	300	400	400	400	800	800	500	600	1000	1100	1200	1800	2000	2400	3000	114
1		27	13																			12
2,5		67	33	22	17	13	П															29
5		133	67	44	33	27	22	17	17	17			13	П								58
10			133	89	67	53	44	33	33	33	17	17	27	22	13	12	11					117
20				178	133	107	89	67	67	67	33	33	53	44	27	24	22	15	13	11		234
30					200	160	133	100	100	100	50	50	80	67	40	36	33	22	20	17	13	351
40						213	178	133	133	133	67	67	107	89	53	48	44	30	27	22	18	468
50	Forces					267	222	167	167	167	83	83	133	Ш	67	61	56	37	33	28	22	585
60	générées par amortisseur					320	267	200	200	200	100	100	160	133	80	73	67	44	40	33	27	702
80	kN					427	356	267	267	267	133	133	213	178	107	97	89	59	53	44	36	936
100							444	333	333	333	167	167	267	222	133	121	Ш	74	67	56	44	
150								500	500	500	250	250	400	333	200	182	167	Ш	100	83	67	
200									667	667	333	333	533	444	267	242	222	148	133	Ш	89	
300											500	500		667	400	364	333	222	200	167	133	
350											583	583			467	424	389	259	233	194	156	
400											667	667			533	485	444	296	267	222	178	
450															600	545	500	333	300	250	200	
	LI	260	420	582	700	872	1006.5	1277	1205	1257	2385	2487	1620	1720	3218	3318	3418	5265	5980	6952	8625	546
	LI (Soufflet)	260	420	582	700						*2464	2566			*3297	*3397	*3497					
	L2	133	183	233	360	528	577	677	678	728	905	950	832	932	1160	1260	1360	2183	2270	2805	3358	235
	L2 (Soufflet)	153	213	273	380						*984	1029			*1239	*1339	*1439					
	L3	127	237	349	340	345	429.5	600	527	529	1480	1537	788	788	2058	2058	2058					311
Dimensions d'encombre-	L3 (Soufflet)	107	207	309	320						1480	1537			2058	2058	2058	3082	3710	4147	5267	
ment	DI		100	/125			 4 0/180)	140	/200	20	00	140	/200		200			200	/250		140/3
	D2		9	5			123		14	10	18	30	4	14		180			27	75		146
	Α		13	20				2	10		215/2	209,6	21	0	215/209,6		,6		28	30		210
	В		13	50				2	70		30	00	27	70		300			36	64		270
	D3			8				2	16		2	2	2	,		32			2	2		26


Espace minimum recommandé pour l'installation : D2 + 5 mm Espace supplémentaire pour chanfrein : 20 mm \times 450 La force finale indiquée inclut le facteur d'efficacité ξ = 0,75 Toutes les dimensions sont en mm

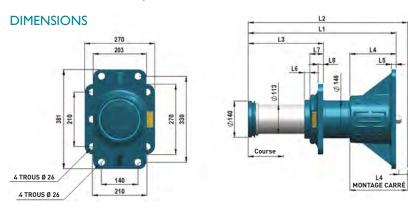

* = Unités non standard

La gamme Type 21 comprend quatre modèles d'amortisseurs de 50 mm à 200 mm. Le petit amortisseur Type 21 a une capacité inférieure à celle des autres amortisseurs Oleo, ce qui explique son utilisation courante sur les petites grues. Ces amortisseurs sont aussi employés dans les aciéries comme butées pour les laminoirs à bandes à chaud et installations à veines multiples.

DIMENSIONS

Données statiques

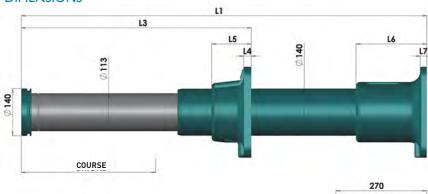
Type 21 – Force maximale 250 kN						
Туре	21/50	21/100	21/150	21/200		
Course (S) (mm)	50	100	150	200		
Capacité dynamique kJ	10	20	30	40		
Force finale maximale admissible kN	250	250	250	250		
Force initiale statique kN	3	3	3	3		
Force finale statique kN	16	15	14	24		

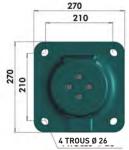


Туре	21/50	21/100	21/150	21/200
Capacité dynamique kJ	10	20	30	40
Force d'impact maximale admissible kN	250	250	250	250
Unité à capsule (MCS) Poids (kg)	8	П	14	16
Unité à montage arrière (MBS) Poids (kg)	П	14	20	22
Unité à montage avant (MFS) Poids (kg)	П	14	17	20
Course (S) (mm)	50	100	150	200
LI (mm)	260	420	582	700
L3 (mm)	133	183	233	360
L4 (mm) *Uniquement avec soufflet de protection	153	213	273	380
L5 (mm)	18	18	18	64
L6 (mm)	20	20	20	20
L6 (mm) *avec soufflet de protection	40	50	60	40
L7 (mm)	17,5	17,5	17,5	17,5
L8 (mm)	45	45	45	75
L9 (mm)	17,5	17,5	17,5	17,5
L10 (mm)	75	75	118	118
Poids d'impact (we)	Code	e de broche c	alibrée (xxx)	
Jusqu'à 1,7 tonnes	051	101	151	201
Jusqu'à 3,5 tonnes	052	102	152	202
Jusqu'à 7 tonnes	053	103	153	203
Jusqu'à 13 tonnes	054	104	154	204
Jusqu'à 25 tonnes	055	105	155	205
Jusqu'à 50 tonnes	056	106	156	206
Jusqu'à 100 tonnes	057	107	157	207
Jusqu'à 200 tonnes	058	108	158	208
Jusqu'à 400 tonnes	059	109	159	209
Jusqu'à 800 tonnes	_	110	_	210

Les caractères en ${\bf gras}$ indiquent des broches calibrées pour masses élevées

Le Type 4 est un amortisseur haute capacité à course courte. Il s'agit d'un des premiers amortisseurs industriels développés par Oleo à partir d'un amortisseur ferroviaire Type 4. Il a une très longue vie utile et il n'est pas rare de trouver des amortisseurs Type 4 en service depuis plus de 25 ans. Ces amortisseurs conviennent à diverses applications industrielles, mais sont en général utilisés dans les aciéries. Ils sont aussi employés sur les ponts basculants, les culbuteurs de wagons pour le transport du charbon et les empileurs-récupérateurs où des masses élevées se déplacent lentement.


Données statiques				
Type 4 – Force maximale I 000 kN				
Туре	4			
Course (S) (mm)	114			
Capacité dynamique kJ	91			
Force finale maximale admissible kN	1000			
Force initiale statique kN	12			
Force finale statique kN	120			

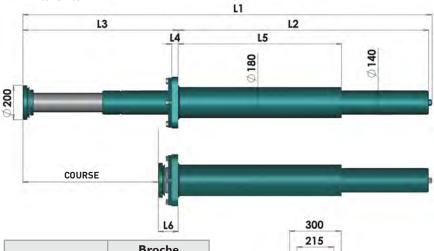

Plage théorique Tonnes	Broche calibrée Code (xx)
I - 4	02
4 - 10	04
10 - 20	05
20 - 40	07
40 - 80	08
80 - 125	10
125 - 300	12
300 - 750	16
750 - 1500	18

Туре	4
Capacité dynamique kJ	91
Force d'impact maximale admissible kN	1000
Unité à capsule (MCZ) Poids (kg)	38,3
Unité à montage arrière (MBZ) Poids (kg)	64,3
Unité à montage arrière (MBZ) Poids (kg)	61,3
Unité à montage avant (MFZ) Poids (kg)	50,3
Course (S) (mm)	114
LI (mm) *montage arrière rectangulaire	515
L2 (mm) *montage arrière carré	546
L3 (mm)	235
L4 (mm) *montage arrière rectangulaire	178
L4 (mm) *montage arrière carré	209
L5 (mm) *montage arrière rectangulaire	19
L5 (mm) *montage arrière carré	22
L6 (mm)	21
L7 (mm)	61
L8 (mm)	20

Développé initialement pour les ponts roulants dans les aciéries, l'amortisseur Type 9 à une capacité élevée et une longue vie utile. À l'heure actuelle, on l'utilise généralement sur les grues de quais et les heurtoirs. Des amortisseurs de ce type ont été employés pour des applications marines spéciales, par exemple, sur des convertisseurs d'énergie houlomotrice avec des étanchéités spéciales et des composants en acier inoxydable anticorrosion.

DIMENSIONS

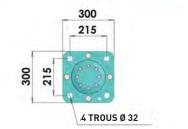
Données statiques					
Type 9 – Force maximale 700 kN					
Туре	9				
Course (S) (mm)	400				
Capacité dynamique kJ	224				
Force finale maximale admissible kN	700				
Force initiale statique kN	12				
Force finale statique kN	155				


Plage théorique Tonnes	Broche calibrée Code (xx)
I - 4	02
4 - 10	04
10 - 20	05
20 - 40	07
40 - 80	08
80 - 125	10
125 - 300	12
300 - 600	15
600 - 1000	19
1000 - 2000	22

Les caractères en **gras** indiquent des pointeaux de masses élevées

Туре	9
Capacité dynamique kJ	224
Force d'impact maximale admissible kN	700
Unité à capsule (MCZ) Poids (kg)	62
Unité à montage arrière (MBS) Poids (kg)	87
Unité à montage avant (MFS) Poids (kg)	78
Course (S) (mm)	400
LI (mm)	1205
L3 (mm)	678
L4 (mm)	19
L5 (mm)	114
L6 (mm)	210
L7 (mm)	19

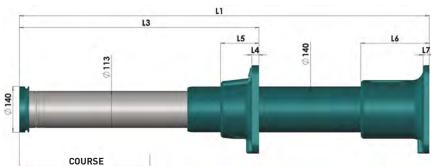
Le Type 15 associe en série deux amortisseurs Type 9. – Ces amortisseurs servent généralement comme heurtoirs pour des équipements ferroviaires ou pour des grues dans des applications portuaires et offshore.

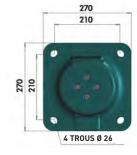

DIMENSIONS

Plage théorique Tonnes	Broche calibrée Code (xx)
0,5 - 2	02
2 - 5	04
5 - 10	05
10 - 20	07
20 - 40	08
40 - 60	10
60 - 150	12
150 - 300	15
300 - 500	19
500 - 1000	22

Les caractères en **gras** indiquent des broches calibrées pour masses élevées

Туре	15
Capacité dynamique kJ	448
Force d'impact maximale admissible kN	700
Unité à montage avant (MMO) Poids (kg)	195
Course (S) (mm)	800
LI (mm)	2385
L2 (mm)	1459
L3 (mm)	905
L4 (mm)	38
L5 (mm)	944
L6 (mm)	105


Données statiques				
Type I5 – Force maximale 700 kN				
Туре	15			
Course (S) (mm) 800				
Capacité dynamique kJ 448				
Force finale maximale admissible kN 700				
Force initiale statique kN 12				
Force finale statique kN 155				

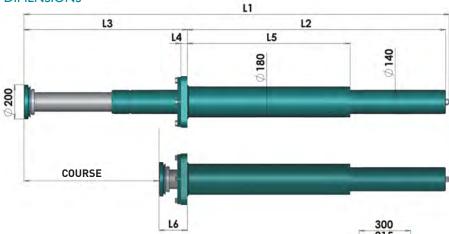


L'amortisseur Type 23 est une version légèrement plus longue du Type 9 qui permet la diminution de la force finale statique pour des applications où l'amortisseur doit être en compression totale à des vitesses peu élevées.

Développé initialement pour les ponts roulants dans les aciéries, l'amortisseur Type 23 à une capacité élevée et une longue vie utile. À l'heure actuelle, on l'utilise généralement sur les grues de quais et les heurtoirs.

DIMENSIONS

Données statiques				
Type 23 – Force maximale 700 kN				
Туре	23			
Course (S) (mm) 400				
Capacité dynamique kJ 224				
Force finale maximale admissible kN 700				
Force initiale statique kN 12				
Force finale statique kN 85				


Plage théorique Tonnes	Broche calibrée Code (xx)
I - 4	02
4 - 10	04
10 - 20	05
20 - 40	07
40 - 80	08
80 - 125	10
125 - 300	12
300 - 600	15
600 - 1000	19
1000 - 2000	22

Les caractères en **gras** indiquent des broches calibrées pour masses élevées

Туре	23
Capacité dynamique kJ	224
Force d'impact maximale admissible kN	700
Unité à capsule (MCZ) Poids (kg)	63
Unité à montage arrière (MBS) Poids (kg)	88
Unité à montage avant (MFS) Poids (kg)	79
Course (S) (mm)	400
LI (mm)	1257
L3 (mm)	728
L4 (mm)	19
L5 (mm)	114
L6 (mm)	210
L7 (mm)	19

Le Type 24 associe en série deux amortisseurs Type 23 – ces amortisseurs servent généralement comme heurtoirs pour des équipements ferroviaires ou pour des grues dans des applications portuaires et offshore.

DIMENSIONS

Plage théorique Tonnes	Broche calibrée Code (xx)
0,5 - 2	02
2 - 5	04
5 - 10	05
10 - 20	07
20 - 40	08
40 - 60	10
60 - 150	12

15

19

22

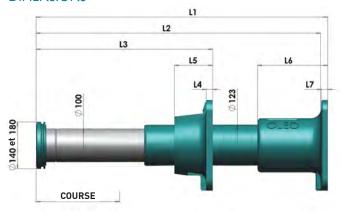
Les caractères en **gras** indiquent des broches calibrées pour masses élevées

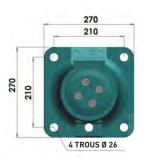
150 - 300

300 - 500

500 - 1000

Туре	24
Capacité dynamique kJ	448
Force d'impact maximale admissible kN	700
Unité à montage avant (MMO) Poids (kg)	197
Course (S) (mm)	800
LI (mm)	2487
L2 (mm)	1516
L3 (mm)	950
L4 (mm)	38
L5 (mm)	962
L6 (mm)	150




Données statiques		
Type 24 – Force maximale 700 kN		
Туре	24	
Course (S) (mm)	800	
Capacité dynamique kJ	448	
Force finale maximale admissible kN	700	
Force initiale statique kN	12	
Force finale statique kN 85		

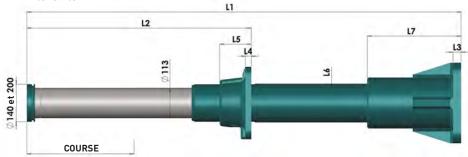
4 TROUS Ø 32

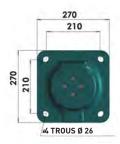
Comme le Type 9, le Type 50 convient pour des applications telles que les ponts roulants dans les aciéries ou sur les grues de quais. L'amortisseur Type 50 a une force maximale et une force finale nominales inférieures, associées à des courses de 250 mm, 300 mm et 400 mm. Ces amortisseurs sont utilisés le plus souvent sur les flèches principales et les chariots principaux des grandes grues de transbordement STS.

DIMENSIONS

Données statiques					
Type 50 – Force maximale 500 kN					
Туре	52	53	54		
Course (S) (mm)	250	300	400		
Capacité dynamique kJ 100 120 160					
Force finale maximale admissible kN 500 500 500					
Force initiale statique kN	5	5	5		
Force finale statique kN 60 60 60					

Туре	52	53	54
Capacité dynamique kJ	100	120	160
Force d'impact maximale admissible kN	500	500	500
Unité à capsule (MCS) Poids (kg)	39	44	53
Unité à montage arrière (MBS) Poids (kg)	63	67	76
Unité à montage avant (MFS) Poids (kg)	59	63	72
Course (S) (mm)	250	300	400
LI (mm)	872	1006,5	1277
L2 (mm)	850,5	985	1255,5
L3 (mm)	527,5	577	677
L4 (mm)	19	19	19
L5 (mm)	114	114	114
L6 (mm)	210	210	210
L7 (mm)	19	19	19


Plage théorique Tonnes	Code de broche calibrée (xxx)		
I - 2,5	202	302	402
2,5 - 5	203	303	403
5 - 10	204	304	404
10 - 20	205	305	405
20 - 40	207	307	407
40 - 80	208	308	408
80 - 150	210	310	410
150 - 300	212	312	412
300 - 600	215	315	415
600 - 1000	219	319	419
1000 - 2000	222	322	422

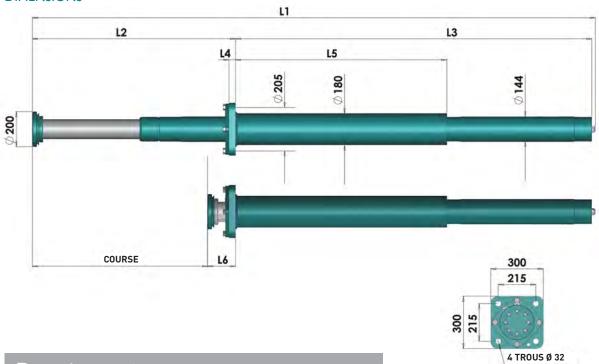

Les caractères en gras indiquent des broches calibrées pour masses élevées

L'amortisseur Type 70 est un amortisseur à course longue, de capacité 700 kN, et courses de 500 mm et 600 mm. En règle générale, il est employé sur les grues de quais et dans les aciéries. Ces amortisseurs sont aussi en service dans le secteur minier en raison de leur capacité d'utilisation à la verticale. De plus, leur capacité de montage à l'oblique a permis leur utilisation comme heurtoirs pour les funiculaires.

DIMENSIONS

Données statiques Série Type 70 - Force maximale 700 kN **75** 76 Туре Course (S) (mm) 500 600 280 336 Capacité dynamique kJ 700 Force finale maximale admissible kN 700 12 12 Force initiale statique kN Force finale statique kN 55 150

Туре	75	76
Capacité dynamique kJ	280	336
Force d'impact maximale admissible kN	700	700
Unité à capsule (MCZ) Poids (kg)	87	88
Unité à montage arrière (MBZ) Poids (kg)	144	145
Unité à montage avant (MFZ) Poids (kg)	102	103
Course (S) (mm)	500	600
LI (mm)	1599	1699
LI (mm) – Montage arrière	1620	1720
L2(mm)	832	932
L3(mm)	30	30
L4(mm)	19	19
L5(mm)	114	114
L6(mm)	144	144
L7(mm)	350	350


Plage théorique Tonnes	Code de pointeau de dosage (xxx)				
2,5 - 5	503	603			
5 - 10	504	604			
10 - 20	505	605			
20 - 40	507	607			
40 - 80	508	608			
80 - 150	510	610			
150 - 300	512	612			
300 - 600	515	615			
600 - 1000	519	619			
1000 - 2000	522	622			

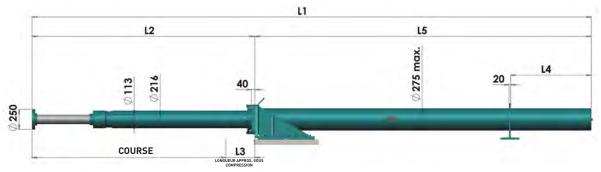
Les caractères en gras indiquent des pointeaux de masses élevées

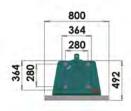
Les amortisseurs Type 700 sont composés de plusieurs amortisseurs Type 70 montés en série – et sont généralement utilisés comme heurtoirs pour des équipements ferroviaires ou pour des grues dans des applications portuaires et offshore. Actuellement, le Type 700 est très souvent choisi pour les grues de quais, car celles-ci sont maintenant plus rapides et plus grandes et exigent des absorbeurs d'énergie plus robustes.

DIMENSIONS

Données statiques								
Type 700 – Force maximale 700 kN								
Туре	710	711	712					
Course (S) (mm)	1000	1100	1200					
Capacité dynamique kJ	560	616	672					
Force finale maximale admissible kN	700	700	700					
Force initiale statique kN	12	12	12					
Force finale statique kN	55	145	145					

Туре	710	711	712
Capacité dynamique kJ	560	616	672
Force d'impact maximale admissible kN	700	700	700
Unité à montage avant (MMO) Poids (kg)	244	245	246
Course (S) (mm)	1000	1100	1200
LI (mm)	3218	3318	3418
L2 (mm)	1160	1260	1360
L3 (mm)	2037	2037	2037
L4 (mm)	37,5	37,5	37,5
L5 (mm)	1208	1208	1208
L6 (mm)	160	160	160


Plage théorique Tonnes	Code de broche calibrée (xxxx)						
2,5 - 5	1004	1104	1204				
5 - 10	1005	1105	1205				
10 - 20	1007	1107	1207				
20 - 40	1008	1108	1208				
40 - 75	1010	1110	1210				
75 - 150	1012	1112	1212				
150 - 300	1015	1115	1215				
300 - 500	1019	1119	1219				
500 - 1000	1022	1122	1222				

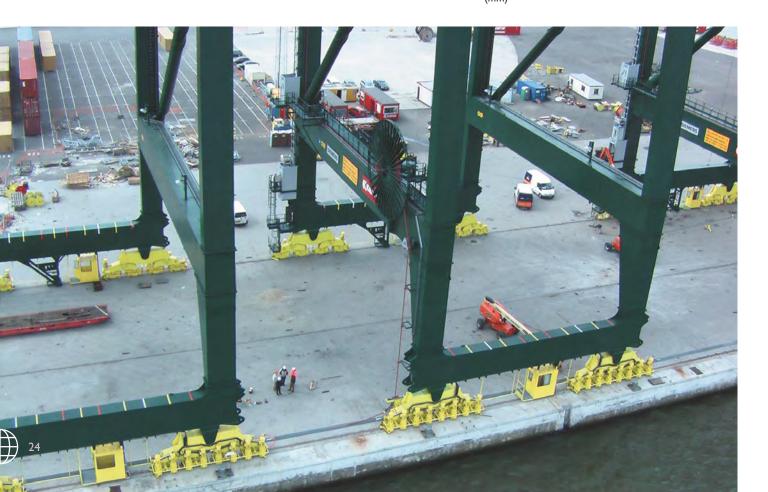

Les caractères en gras indiquent des broches calibrées pour masses élevées

Habituellement utilisés comme heurtoirs, ces amortisseurs sont composés de plusieurs unités Type 70 à l'intérieur d'un logement. Ils peuvent être montés sur une structure mécanosoudée ou sur un support en béton armé. Ces amortisseurs à course longue s'utilisent en général avec un chariot d'amortissement qui les protège contre les charges décalées sources de dommages.

DIMENSIONS

Données statiques									
Série Type 700 – Force maximale 700 kN									
Туре	718	720	724	730					
Course (S) (mm)	1800	2000	2400	3000					
Capacité dynamique kJ	1008	1120	1344	1680					
Force finale maximale admissible kN	700	700	700	700					
Force initiale statique kN	12	12	12	12					
Force finale statique kN	150	55	150	150					


Туре	718	720	724	730
Capacité dynamique kJ	1008	1120	1344	1680
Force d'impact maximale admissible kN	700	700	700	700
Unité à montage à patte de fixation (MMO) Poids (kg)	-	1500	2288	2345
Unité à montage avant (MMO) Poids (kg)	1090	-	1692	1749
Course (S) (mm)	1800	2000	2400	3000
LI (mm)	5265	5980	6952	8625
L2 (mm)	2199	2270	2770	3358
L3 (mm)	402	269	356	358
L4 (mm)	550	1000	1000	1000
L5 (mm)	3066	3710	4187	5267



VUE D'ENSEMBLE DE LA GAMME - SÉRIE 110

Série IIO										
	Gamme d'amortisseurs	200	300	400	500	600	700	800	1000	1200
Énergie à absorber/amortisseur	Force possible maximale kN	350	350	350	300	300	250	250	225	200
(kJ)	Course mm	200	300	400	500	600	700	800	1000	1200
I		7	4	3	3	2	2	2	I	I
2,5		17	П	8	7	6	5	4	3	3
5		33	22	17	13	П	10	8	7	6
10		67	44	33	27	22	19	17	13	П
20		133	89	67	53	44	38	33	27	22
30		200	133	100	80	67	57	50	40	33
40	Forces	267	178	133	107	89	76	67	53	44
50	générées	333	222	167	133	Ш	95	83	67	56
60	par		267	200	160	133	114	100	80	67
80	amortisseur kN			267	213	178	152	133	107	89
100				333	267	222	190	167	133	Ш
150								250	200	167

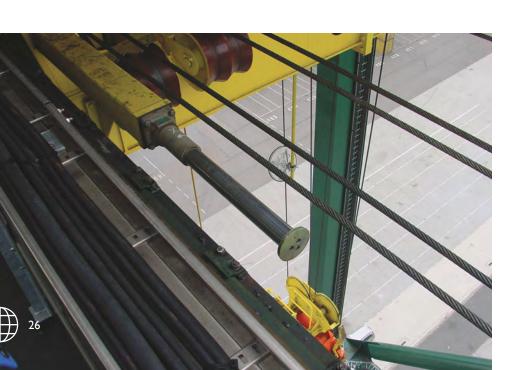
Force (kN) Course 200 300 400 500 600 700 800 1000 1200 (mm)

L'amortisseur Type II0 est un modèle extrêmement modulaire qui permet l'utilisation des mêmes composants pour une large gamme d'applications.

L'amortisseur Type I I 0 est disponible avec finition chromée de série pour les environnements non corrosifs tels que les usines, et avec revêtement qualité marine en option pour les environnements plus corrosifs tels que les quais et les ports.

Les spécifications du Type II0 correspondent aux utilisations suivantes:

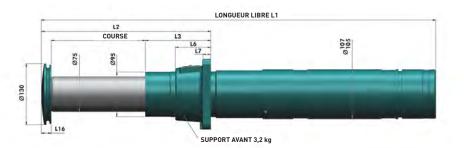
- 3 500 cycles à 10 % de la charge nominale (correspondant à un impact quotidien de l'amortisseur pendant 10 ans)
- 500 cycles à 50 % de la charge nominale (correspondant à un impact hebdomadaire pendant 10 ans)
- 12 cycles à pleine charge, ce qui équivaut à :
 - Un essai d'installation
 - Un essai chaque année pendant 10 ans
 - Un fonctionnement d'urgence
- Plage de température de service de -30 °C à +100 °C.


Tableau de perfori	man	ce							
Course mm	200	300	400	500	600	700	800	1000	1200
Force finale maximale kN	350	350	350	300	300	250	250	225	200
Angle d'impact (Code F, D, T)	2,5°	2,5°	2,5°	2,0°	2,0°	2,0°	2,0°	1,5°	1,5°
Angle d'impact (Code B)	1,5°	1,5°	1,5°	S/O	S/O	S/O	S/O	S/O	S/O
Diamètre de plateau mm	130	130	130	130	130	130	130	130	130
Énergie absorbée maximale kJ	53	78	105	112	135	131	150	170	180

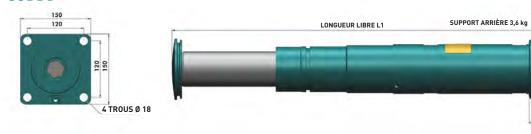
Course	Longu	eur libr	re	Suppo	ort											Masse	(kg)
s	LII et	de monta L12 s'app 2 s'appliq	liquent,		L3	L4	L5	L6	L7	L8	L9	LI0	LI3	LI4	LI5	LI6	Capsule
	LI	LII	L2	LI2													uniquement
200	839	849	360	370	139	539	474	75	18	79	18	30	15	76	30	21	28,7
300	1155	1165	578	588	257	637	572	75	18	79	18	30	15	76	30	21	37,2
400	1469	1479	678	688	257	85 I	786	75	18	79	18	30	15	76	30	21	46,2
500	1720	1730	778	788	257	1002	938	75	18	79	18	30	15	76	30	21	52,3
600	1975	1985	878	888	257	1157	1092	75	18	79	18	30	15	76	30	21	59,6
700	2270	2280	978	988	257	1352	1288	75	18	79	18	30	15	76	30	21	66,7
800	2564	2574	1078	1088	257	1547	1482	75	18	79	18	30	15	76	30	21	76,4
1000	3064	3074	1278	1288	257	1846	1781	75	18	79	18	30	15	76	30	21	89,5
1200	3635	3645	1478	1488	257	2217	2152	75	18	79	18	30	15	76	30	21	105,4

Dosage dispo	Dosage disponible									
Course (mm)	200	300	400	500	600	700	800	1000	1200	
Masse (tonne)										
jusqu'à 5	02	-	-	-	-	-	-	-	-	
5 à 12,5	04	04	04	04	-	-	-	-	-	
10 à 25	05	05	05	05	05	05	05	05	05	
20 à 50	07	07	07	07	07	07	07	07	07	
40 à 100	08	08	08	08	08	08	08	08	08	
80 à 200	10	10	10	10	10	10	10	10	10	
150 à 350	12	12	12	12	12	12	12	12	12	
300 à 700	15	15	15	15	15	15	15	15	15	
600 à 1250	19	19	19	19	19	19	19	19	19	
1000 à 2500	22	22	22	22	22	22	22	22	22	

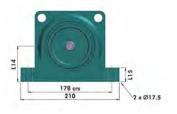
Type II0 - Forces finales maximales admissibles									
Types de montage		e F, D, T	Code B						
de l'amor- tisseur	Force max. kN	Angie d'impact max.*	Force max. kN	Angie d'impact max.*					
200 mm	350	2,5	225	1,5					
300 mm	350	2,5	200	1,5					
400 mm	350	2,5	200	1,5					
500 mm	300	2,0	S/O	S/O					
600 mm	300	2,0	S/O	S/O					
700 mm	250	2,0	S/O	S/O					
800 mm	250	2,0	S/O	S/O					
I 000 mm	225	1,5	S/O	S/O					
I 200 mm	200	1,5	S/O	S/O					

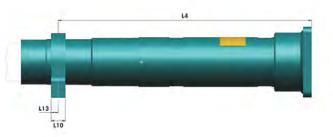

UTILISATION

L'amortisseur Type II0 est disponible en plusieurs configurations de montage :

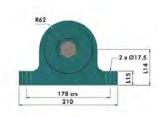

- Montage avant
- Montage arrière (uniquement avec course 200 mm, 300 mm et 400 mm)
- Montage arrière
- Montage à patte de fixation avant et arrière

MONTAGE AVANT CODE F





MONTAGE ARRIÈRE CODE B


MONTAGE ARRIÈRE À SUPPORT AVANT CODE D

MONTAGE À DOUBLE PATTE DE FIXATION CODE T

REMARQUE

Montage arrière-UNIQUEMENT AVEC COURSE 200 mm, 300 mm, 400 mm

Montage à double patte de fixation –Les unités à montage à pattes de fixation doivent avoir une butée arrière, car les charges de l'amortisseur ne doivent pas être exercées uniquement sur les boulons de fixation des pattes

^{*} En cas de montage de soufflets, L1 et L2 sont +10 mm

OPTIONS SUPPLÉMENTAIRES

Des options supplémentaires sont disponibles pour les amortisseurs industriels Oleo, notamment :

Plongeurs à revêtement qualité marine : Ces plongeurs sont indispensables en cas d'exposition à des atmosphères salines ou à des retombées industrielles.

Étanchéités pour hautes températures : Ces étanchéités sont nécessaires lorsque des cadences de travail élevées sont associées à des températures ambiantes élevées.

Fils de sécurité: Ces fils de sécurité sont utilisés lorsque des normes sont spécifiées pour des ponts roulants, par ex. AISE, OSHA etc. (uniquement plateaux Ø125 mm).

Soufflets : Utilisés pour protéger le plongeur des débris, du sel, des produits chimiques, etc., dans les environnements corrosifs et poussiéreux.

AMORTISSEUR À MONTAGE AVANT AVEC SOUFFLET

AMORTISSEUR À MONTAGE AVANT AVEC FIL

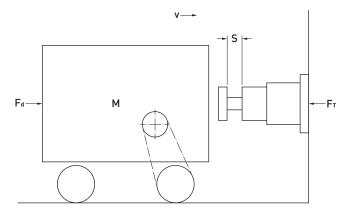
AMORTISSEUR À MONTAGE ARRIÈRE AVEC SOUFFLET ET FIL

AMORTISSEUR À MONTAGE ARRIÈRE AVEC FIL

Pour les environnements particulièrement sévères, les zones chimiquement agressives ou si l'on prévoit une dégradation chimique des polymères, contacter Oleo ou nos représentants pour nous permettre d'effectuer une étude technique et de faire des recommandations.

UNITÉS SUR COMMANDE

Des unités sur commande ont été fabriquées conformément aux exigences des clients, avec, notamment, les adaptations suivantes :


- Systèmes de dosage spécialement conçus
- Supports et éléments d'adaptation utilisables avec les interfaces des utilisateurs
- Peintures spéciales pour environnements sévères
- Revêtements spéciaux pour environnements sévères
- Étanchéités supplémentaires permettant une utilisation en milieu marin

Nous sommes heureux de collaborer avec nos clients pour fournir une solution d'absorption d'énergie répondant à leurs besoins spécifiques. Pour plus de renseignements ou pour obtenir un devis, veuillez nous contacter.

IMPACT HORIZONTAL

Énergie cinétique à absorber $E_k = \frac{Mv^2}{2}$

Énergie due à la force motrice à absorber $E_d = F_dS$

Énergie totale à absorber $E_T = E_k + E_d$

Force d'impact maximale due à l'inertie $F_i = \frac{E_k}{S\xi}$

Force d'impact totale maximale $F_T = F_i + F_d$

Masse théorique de l'amortisseur $M_e = \frac{2.E_T}{nv^2}$

LISTE DES SYMBOLES MATHÉMATIQUES

Afin d'éviter le risque de confusion dans les calculs, utiliser toujours des unités SI (Système international d'unités) dans les formules, puis, au besoin, convertir en unités plus appropriées.

Symbole	Descriptif	Unité SI
M	Masse du corps	kg
M_{e}	Masse théorique de l'amortisseur	kg
S	Course de l'amortisseur	m
E_k	Énergie cinétique	J
E_d	Énergie due à la force motrice	J
E _T	Énergie totale	J
٧	Vitesse	m/s
F _i	Force d'inertie	Ν
F_d	Force motrice	Ν
F _T	Force totale	Ν
n	Nombre d'amortisseurs en parallèle	_
ξ	Efficacité	_

Exemple pratique

Ex. Considérons un corps ayant une masse $M = 20~000 \, kg$ (20 tonnes), se déplaçant à une vitesse (v) de 1,5 m/s avec une force motrice (F_d) de 20 kN (20 000 N).

Pour calculer l'énergie absorbée :

 $E_k = 1/2 \text{ M}v^2 = ((20\ 000 \text{ kg}) \times (1.5 \text{ m/s})^2)/2 = 22\ 500 \text{J} = 22.5 \text{ kJ}$

Par conséquent, choisissons un amortisseur Type 21-150

 $E_d = F_d.S = 20\ 000\ N \times 0,15\ m = 3\ 000\ J = 3\ kJ$

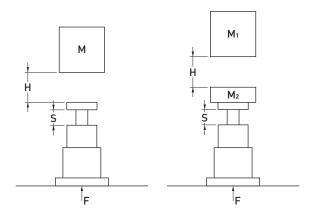
Énergie totale à absorber

 $E_T = E_k + E_d = 22500J + 3000J = 25500J = 25,5 kJ$

Pour calculer la force d'impact maximale :

 $F_{i \text{ max}} = E_k / (S. \xi) = 22500 J / (0.15 m \times 0.8) = 187500 N = 187.5 kN$

 $F_{d \max} = 20\ 000 N = 20 kN$


 $F_{T \text{ max}} = F_{i \text{ max}} + F_{d \text{ max}} = 187500 \text{ N} + 20000 \text{ N} = 207500 \text{ N} = 207,5 \text{ kN}$

Pour calculer la masse théorique de l'amortisseur pour le choix de la broche calibrée :

 $M_e = 2.E_T / (n.v^2) = 2 \times 25 500 J / (I \times I,5 m/s)^2 = 22 667 kg = 22,667 tonnes$

Choisir un amortisseur Type 21-150 avec une capacité dynamique de 30 kJ et une charge maximale admissible de 250 kN, pour satisfaire à ces exigences. Par conséquent, choisir le code de broche calibrée 155 pour des masses jusqu'à 25 000 kg (25 tonnes).

IMPACT VERTICAL

LISTE DES SYMBOLES MATHÉMATIQUES

Afin d'éviter le risque de confusion dans les calculs, toujours utiliser des unités SI (Système international d'unités) dans les formules, puis, au besoin, convertir en unités plus appropriées.

•	• • •	
Symbole	Descriptif	Unité SI
M	Masse du corps	kg
M_{I}	Masse du corps I	kg
M_2	Masse du corps 2	kg
M_{e}	Masse théorique de l'amortisseur	kg
Н	Hauteur de chute libre	m
S	Course de l'amortisseur	m
Ep	Énergie potentielle	J
٧	Vitesse	m/s
F	Force d'impact maximale	Ν
g	Accélération due à la pesanteur	m/s ²
n	Nombre d'amortisseurs en parallèle	-
ξ	Efficacité	-

Cas d'une seule masse :

Énergie potentielle à absorber $E_D = Mg(H+S)$

Force d'impact maximale $F = \frac{E_p}{S\xi}$

Masse théorique de l'amortisseur $M_e = 2E_p$

OU $M_e = \frac{M(H+S)}{nH}$

Vitesse initiale du plongeur $v = \sqrt{2 gH}$

Cas de plusieurs masses :

Énergie potentielle à absorber $E_p = M_1g (H+S) + M_2gS$

Force d'impact maximale $F = \frac{E_p}{S\xi}$

Vitesse initiale du plongeur $v = \left(\frac{M_1}{M_1 + M_2}\right) \sqrt{2gH}$

Masse théorique de l'amortisseur $M_e = \frac{2E_p}{nv^2}$

Exemple pratique

Ex. Considérons un corps ayant une masse (M₁) = 22 000kg (22 tonnes)/en chute libre sur un autre corps qui a une masse (M₂) de 3 000kg (3 tonnes) assisté par un amortisseur. La hauteur de chute libre (H) étant de 0,15m. Un exemple de ce type de cas est celui des amortisseurs des dispositifs d'arrêt des cages de descente dans les mines utilisant 4 amortisseurs Type 4 à course 114mm; il s'agit là d'un cas à plusieurs masses.

Pour calculer l'énergie équivalente absorbée :

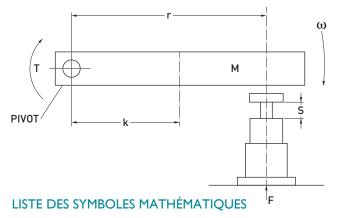
 $E_D = M_1 g (H+S) + M_2 g S = (22\ 000).(0,15+0,114) \times 9,81 + 3\ 000 \times 9,81 \times 0,114 = 60\ 331,5] = 60,3315k$

Pour calculer la force d'impact finale maximale :

$$F = \frac{E_p}{S\xi} = \frac{60331.5}{0.114 \times 0.8}$$

F = 661529,6N = 661,5296kN

Pour calculer la masse équivalente pour le choix de la broche calibrée :


Vitesse initiale du plongeur v = $\frac{M_1\sqrt{2 \text{ gH}}}{M_1+M_2} = \frac{22\ 000\ \text{x}\sqrt{2 \times 9,81 \times 0,15}}{22\ 000 + 3\ 000} = 1,5\text{m/s}$

Masse théorique de l'amortisseur $M_e = \frac{2E_p}{nv^2} = \frac{2 \times 60331,5}{4 \times 1,5^2} = 13 407 \text{kg} = 13,4 \text{ tonnes}$

Le choix d'un amortisseur Type 4 ayant une capacité dynamique de 1 000kN satisfait à ces exigences. Par conséquent, choisir le code de broche calibrée 05 pour des masses jusqu'à 20 000kg (20 tonnes).

IMPACT ROTATIF

Afin d'éviter le risque de confusion dans les calculs, utiliser toujours

des unités SI (Système international d'unités) dans les formules, puis, au besoin, convertir en unités plus appropriées.

Symbole	Descriptif	Unité SI
M	Masse du corps	kg
M_{e}	Masse théorique de l'amortisseur	kg
S	Course de l'amortisseur	m
k	Rayon de rotation	m
E_k	Énergie cinétique	J
E_d	Énergie due à la force motrice	J
E _T	Énergie totale	J
ω	Vitesse angulaire	rad/s
1	Moment d'inertie	kg.m²
Т	Couple	Nm
F	Force d'impact	Ν
n	Nombre d'amortisseurs en parallèle	_
٤	Efficacité	_

Formule de base

Énergie cinétique à absorber $E_k = \frac{I\omega^2}{2} = \frac{Mk^2\omega^2}{2}$

Énergie due à la force motrice $E_d = TS$

Énergie totale à absorber $E_T = E_k + E_d$

Force d'impact maximale $F = \frac{E_T}{SF}$

Masse théorique de l'amortisseur $M_e = \frac{2 E_T}{n (\omega r)^2}$

Exemple pratique

Ex. Considérons un pont tournant, ayant un moment d'inertie (I) de 7 500 000 kgm², un rayon de bras d'amortisseur (r) de 8m, une vitesse angulaire (ω) de 0,174 rad/sec et un couple moteur (T) de I 500 000 Nm. Avec 2 amortisseurs.

Pour calculer l'énergie à absorber :

$$E_k = \frac{I\omega^2}{2} = \frac{7\ 500\ 000 \times 0, 174^2}{2} = 113535J = 113,54kJ$$

Choisissons un amortisseur Type 4 à course 114 mm :

$$E_d = TS = \frac{1500000 \times 0,114}{9} = 21,375 \text{ kJ}$$

Énergie totale à absorber :

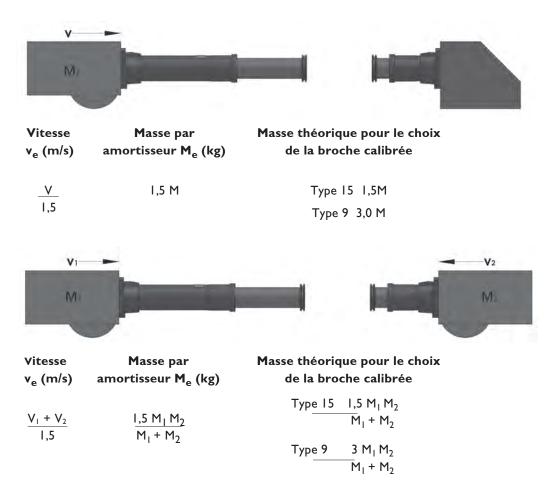
Par conséquent $E_T = E_k + E_d = 113535 + 21375 = 134910J = 134,91 kJ$

Pour calculer la force d'impact maximale :

$$F = \frac{E_T}{S\xi} = \frac{134\ 910 = 1\ 479\ 276\ N = 1479,3 kN}{0,114 \times 0,8}$$

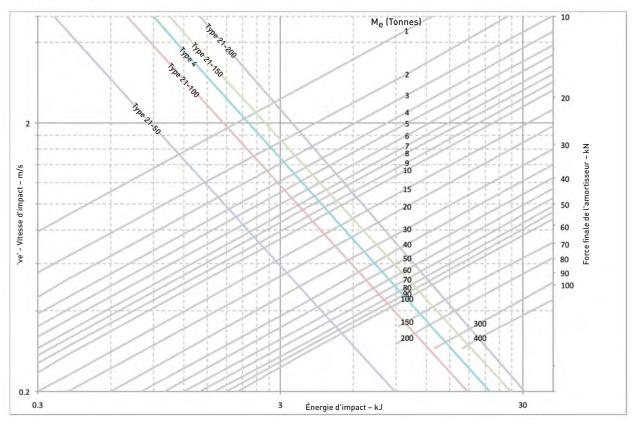
Pour calculer la masse équivalente pour le choix de la broche calibrée :

$$M_e = \frac{2E_T}{n (\omega r)^2} = \frac{2 \times 134910}{2 \times (0,174 \times 8)^2} = 69,625 \text{ tonnes}$$


Par conséquent, choisir le code de broche calibrée 08 pour des masses jusqu'à 80 000 kg (80 tonnes).

CAS DE CHARGES

POUR DES AMORTISSEURS DE MÊME TYPE UTILISÉS ENSEMBLE


		N° de cas	Vitesse V _e (m/s)	Masse par amortisseur M _e (kg)
M v -		I	٧	M
M V -		2	<u>V</u> 2	2M
M. v.	- V2 M)/	3	V ₁ + V ₂	$\frac{M_1M_2}{M_1+M_2}$
M. v	- ve M.	4	$\frac{V_1 + V_2}{2}$	$\frac{2M_1M_2}{M_1+M_2}$

POUR DES AMORTISSEURS DE TYPES DIFFÉRENTS AVEC ALÉSAGES DE CYLINDRES IDENTIQUES ET UTILISÉS ENSEMBLE (ex. UN TYPE 9 AVEC UN TYPE

NOMOGRAMME

Graphique de performance

Avant d'utiliser le graphique, on doit connaître la masse d'impact « $M_{\rm e}$ » et la vitesse d'impact 'v_{\rm e}' de la machine en mouvement. Sur les machines à voie très large, telles que les ponts roulants, la masse sur le rail peut varier considérablement en raison de la charge asymétrique ou de la position du chariot. Dans ces cas, la masse maximale sur le rail DOIT ÊTRE utilisée et chaque côté du pont doit être traité séparément.

Comment utiliser le graphique :

Impact contre des butées (Cas d'impact I ou 2 - voir page 10)

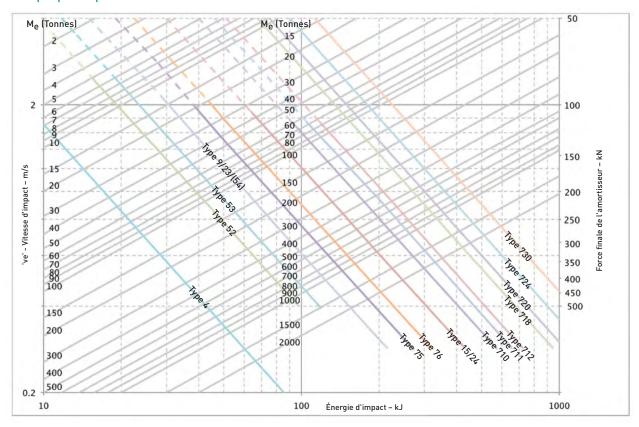
Sur le graphique, projeter une droite horizontale depuis l'échelle « v_e » pour entrer en intersection avec la droite de la masse d'impact incliné « M_e ». À travers ce point, tracer une droite verticale jusqu'à l'échelle inférieure pour obtenir l'énergie d'impact qui doit être absorbée par l'amortisseur. À partir des points d'intersection de cette droite verticale et des droites diagonales de l'amortisseur, projeter des droites horizontales jusqu'à l'échelle de droite pour obtenir la force par amortisseur.

Dans certains cas, on ne peut pas obtenir d'intersection entre la droite de vitesse et la droite de masse d'impact. Ceci indique que l'énergie à absorber est supérieure à la capacité d'un seul amortisseur, et les tracés ci-dessus doivent être répétés pour un deuxième impact (cas 2), c.-à-d. qu'il faut ajouter un autre amortisseur, en veillant à ce que la masse d'impact « M_e » et la vitesse d'impact « v_e » soient correctes. Cette formule figure à la section Cas de charges.

Impacts entre deux structures en mouvement (Cas d'impact 3 ou 4)

Procéder comme décrit plus haut, mais effectuer d'abord les corrections nécessaires pour la masse d'impact « M_e » et la vitesse « v_e » à l'aide de la formule indiquée à la section Cas de charges, qui prend en compte la masse et la vitesse des deux machines.

Commencer par le Cas 3 et répéter pour le Cas 4 si la capacité d'absorption d'énergie de l'amortisseur a été dépassée ou si la résistance de l'amortisseur est trop élevée, c.-à.-d. ajouter un amortisseur supplémentaire.


Amortisseurs en parallèle

Les conditions d'impact I-4 s'appliquent à un seul amortisseur ou à deux amortisseurs en série. Pour obtenir une capacité d'absorption d'énergie supplémentaire, ces configurations peuvent être dupliquées, pour partager les forces. Dans ce cas, la masse d'impact par amortisseur « M_e » indiquée dans le tableau doit être divisée par deux.

Cette configuration est quelquefois préférable lorsque la longueur est limitée et les forces sur les heurtoirs ne sont pas cruciales, et le Cas I peut être utilisé en double au lieu du Cas 2.

NOMOGRAMME

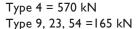
Graphique de performance

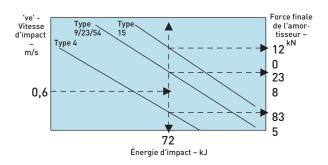
Exemple - Pont roulant

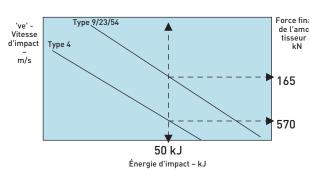
Poids total du pont roulant	700 Tonnes		
Poids du chariot	200 Tonnes		
Vitesse du pont roulant	0,6 m/s		

Amortisseurs pour un pont roulant contre un heurtoir Prendre la Condition d'impact du Cas I

Calculer la masse sur le rail à chaque extrémité du pont séparément. Masse du pont UNIQUEMENT à une extrémité = 250 000 kg = 250 Tonnes


Masse supplémentaire due au chariot situé à cette extrémité (0,75 de la portée totale) = 150 000 kg = 150 Tonnes $M_e = 150\ 000\ kg + 250\ 000\ kg = 400\ Tonnes$


Vitesse d'impact maximale, $v_e = 0.6$ m/s


Lire sur le graphique : Énergie à absorber par amortisseur = 72 k Force d'amortissement Type 4 = 835 kN Force d'amortissement Type 9 = 238 kN* Force d'amortissement Type 15 = 120 kN

* L'amortisseur Type 9 serait une option idéale

Exemple - Amortisseur pour un corps entrant en collision avec un heurtoir, l'énergie d'impact maximale ne devant pas dépasser 50 kJ. Utiliser le nomogramme pour évaluer la force finale.

NOUS FOURNISSONS DES SOLUTIONS, PAS SEULEMENT DES PRODUITS

SIÈGE SOCIAL Grovelands Longford Road Exhall Coventry CV7 9NE Royaume-Uni T +44 (0)24 7664 5555 F +44 (0)24 7664 5900 E info@oleo.co.uk OLEO.CO.UK

Remarques pour tous les amortisseurs industriels Oleo :

Plage de température ambiante autorisée -25°C à +70°C. Remarque : pour des températures extérieures à cette plage, consulter OLEO International.

OLEO International est une division de T A Savery and Co Limited, société du groupe Brigam Limited T A Savery and Co Limited est une société inscrite au Registre du Commerce d'Angleterre et du Pays de Galles sous la référence 00272170 et dont le siège social est sis Grovelands, Longford Road, Exhall, Coventry, CV7 9NE, Royaume-Uni

Version 3 Maio 2013